Канал автоматичного супроводження літальних апаратів за напрямком з оптико-електронним модулем та можливістю формування і обробки зображення ла для лівс полігонного випробувального комплексу

Є ще 3 сторінки.

Дивитися все сторінки або завантажити PDF файл.

Формула / Реферат

Канал автоматичного супроводження літальних апаратів за напрямком з оптико-електронним модулем та можливістю формування і обробки зображення ЛА для ЛІВС полігонного випробувального комплексу, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, модифікований селектор подовжніх мод, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, модифікований інформаційний блок, резонансні підсилювачі, налаштовані на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери "1"|"0", схеми I, лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронну обчислювальну машину та а - введення опорного сигналу з частотою Δνм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) літального апарату для уточнення похибки збігу по кутах, який відрізняється тим, що додатково введено оптико-електронний модуль, який складений з телевізійного та інфрачервоного каналів.

Текст

Реферат: Канал автоматичного супроводження літальних апаратів за напрямком з оптико-електронним модулем та можливістю формування і обробки зображення ЛА для ЛІВС полігонного випробувального комплексу містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, модифікований селектор подовжніх мод, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, модифікований інформаційний блок, резонансні підсилювачі, налаштовані на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери "1"|"0", схеми I, лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронну обчислювальну машину та а введення опорного сигналу з частотою Δνм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) літального апарату для уточнення похибки збігу по кутах. Додатково введено оптико-електронний модуль, який складений з телевізійного та інфрачервоного каналів. UA 89593 U (12) UA 89593 U UA 89593 U 5 10 15 20 25 30 35 40 45 50 55 60 Запропонована корисна модель належить до галузі електрозв'язку і може бути використана для синтезу лазерної інформаційно-вимірювальної системи (ЛІВС) з частотно-часовим методом (ЧЧМ) пошуку, розпізнавання та вимірювання параметрів руху літального апарату (ЛА). Відомий «Канал автоматичного супроводження літальних апаратів за напрямком з можливістю формування та обробки зображення ЛА» [1], який містить керуючий елемент (КЕ), блок керування дефлекторами (БКД), лазер з накачкою (Лн), модифікований селектор подовжніх мод (МСПМ), модифікований блок дефлекторів (МБД), передавальну оптику (ПРДО), приймальну оптику (ПРМО), фотодетектор (ФТД), широкосмуговий підсилювач (ШП), модифікований інформаційний блок (МІБ), резонансні підсилювачі (РП), налаштовані на відповідні частоти міжмодових биттів, детектори (Дет), фільтри (Ф), формувачі імпульсів (ФІ), тригери ("1"|"0"), схеми "і" («І»), лінії затримки (ЛЗ), лічильники (Лч), цифро-аналогові перетворювачі (ЦАП), фільтри нижніх частот (ФНЧ), підсилювачі (фільтри) сигналу похибки (ПСП), виконавчі механізми (ВМ), електронно-цифрову обчислювальну машину (ЕЦОМ) та а введення опорного сигналу з частотою Δνм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) ЛА для уточнення похибки збігу по кутах. Недоліком відомого каналу є те, що він не забезпечує збереження інформації, яка оброблена під час проведення випробувань ЛА. Найбільш близьким до запропонованого технічним рішенням, вибраним як прототип є «Канал автоматичного супроводження літальних апаратів за напрямком з МСПМ та можливістю формування і обробки зображення ЛА для ЛІВС полігонного випробувального комплексу» [2], який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, модифікований селектор подовжніх мод, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, модифікований інформаційний блок, резонансні підсилювачі, налаштовані на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери ("1"|"0"), схеми "і", лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронну обчислювальну машину (ЕОМ) та а введення опорного сигналу з частотою Δνм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) ЛА для уточнення похибки збігу по кутах. Недоліком каналу-прототипу є те, що він не здійснює об'єктивний контроль ЛА у денних і нічних умовах під час проведення випробувань. В основу корисної моделі поставлена задача створити канал автоматичного супроводження літальних апаратів за напрямком з оптико-електронним модулем та можливістю формування і обробки зображення ЛА для ЛІВС полігонного випробувального комплексу, який дозволить здійснювати виявлення ЛА, точне і стійке кутове автосупроводження, при одночасному вимірюванні кутів азимута α і міста β у широкому діапазоні дальностей, починаючи з початкового моменту його польоту, багатоканальний (N) інформаційний взаємозв'язок з ЛА на несучих частотах νn, об'єктивний контроль, розширення функціональних можливостей під час проведення випробувань ЛА у нічний час, збереження інформації, яка оброблена під час проведення випробувань та, в разі необхідності, формування і обробку його зображення. Поставлена задача вирішується за рахунок того, що у канал-прототип, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, модифікований селектор подовжніх мод, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, модифікований інформаційний блок, резонансні підсилювачі, налаштовані на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери ("1"|"0"), схеми "і", лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронну обчислювальну машину та а - введення опорного сигналу з частотою Δνм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) ЛА для уточнення похибки збігу по кутах, додатково введено оптико-електронний модуль (OEM), який складений з телевізійного та інфрачервоного каналів. Побудова каналу автоматичного супроводження літальних апаратів за напрямком з оптикоелектронним модулем та можливістю формування і обробки зображення ЛА для ЛІВС полігонного випробувального комплексу пов'язана з використанням ЧЧМ [3] та синхронізованого одномодового багаточастотного випромінювання єдиного лазера-передавача. Технічний результат, який може бути отриманий при здійсненні корисної моделі полягає у виявленні, стійкому кутовому автосупроводженні, при одночасному високоточному вимірюванні кутів азимута і міста у широкому діапазоні дальностей, починаючи з початкового моменту його 1 UA 89593 U 5 10 15 20 25 30 35 40 45 50 55 60 польоту, багатоканальному (N) інформаційному взаємозв'язку з ЛА на несучих частотах νn, здійсненні об'єктивного контролю ЛА у денних і нічних умовах, збереженні інформації, яка оброблена під час проведення випробувань та, в разі необхідності, формуванні і обробці його зображення. На фіг. 1 приведена узагальнена структурна схема запропонованого каналу, де: І вимірювальний сигнал; II - інформаційний сигнал та сигнал з просторовою модуляцією поляризації; III - комбінований сигнал у видимому і інфрачервоному діапазонах; а - введення опорного сигналу з частотою Δνм (3Δνм) від передавального лазера; б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей α' і β') ЛА для уточнення похибки збігу по кутах каналів. На фіг. 2 приведено створення рівносигнального напрямку (РСН) та сканування сумарною діаграмою спрямованості (ДС) лазерного випромінювання у невеликому куті і окремо 4-мя ДС в ортогональних площинах. На фіг. 3 приведено створення лазерного сигналу з просторовою модуляцією поляризації. На фіг. 4 приведені епюри напруг з виходів блоків запропонованого каналу. На фіг. 5 приведені епюри напруг з виходів блоків запропонованого каналу, які визначають полярність, де: а) - для визначення знаку «+»; б) - для визначення знаку «-». На фіг. 6 приведено кут відхилення ЛА від РСН відносно ЛІВС. Запропонований канал автоматичного супроводження літальних апаратів за напрямком з оптико-електронним модулем та можливістю формування і обробки зображення ЛА для ЛІВС полігонного випробувального комплексу містить керуючий елемент 1, блок керування дефлекторами 2, лазер з накачкою 3, модифікований селектор подовжніх мод 4, модифікований блок дефлекторів 5, передавальну оптику 6, оптико-електронний модуль 7, який складений з телевізійного та інфрачервоного каналів, приймальну оптику 8, фотодетектор 9, широкосмуговий підсилювач 10, модифікований інформаційний блок 11, резонансні підсилювачі 12, налаштовані на відповідні частоти міжмодових биттів, детектори 13, фільтри 14, формувачі імпульсів (ФІ1 - 15, ФІ2 - 16), тригери "1"|"0" 17, схеми "і" 18, лінії затримки 19, лічильники 20, цифро-аналогові перетворювачі 21, фільтри нижніх частот 22, підсилювачі (фільтри) сигналу похибки 23, виконавчі механізми 24, електронну обчислювальну машину 25 та а - введення опорного сигналу з частотою Δνм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) ЛА для уточнення похибки збігу по кутах. Робота запропонованого каналу автоматичного супроводження літальних апаратів за напрямком з оптико-електронним модулем та можливістю формування і обробки зображення ЛА для ЛІВС полігонного випробувального комплексу полягає у наступному. Із синхронізованого одномодового багаточастотного спектра випромінювання лазера-передавача (Лн) за допомогою МСПМ виділяються необхідні пари частот і окремі частоти для створення: - багатоканального (N) інформаційного зв'язку, за умови використання сигналу подовжніх мод (несучих частот νn); - лазерного сигналу з просторовою модуляцією поляризації, за умови використання сигналу з подовжньої моди νn (в подальшому νn1, νn2); - рівносигнального напрямку на основі формування сумарної ДС лазерного випромінювання, завдяки 4-м парціальним ДС, що частково перетинаються, за умови використання комбінацій подовжніх мод («підфарбованих» різницевими частотами міжмодових биттів): Δν54=ν5-ν4=Δνм, Δν97=ν9-ν7=2Δνм, Δν63=ν6-ν3=3Δνм, Δν82=ν8-ν2=6Δνм. Груповий сигнал, який складений з несучих частот νn, минаючи МБД, потрапляє на ПРДО, де змішується (модулюється) з інформаційним сигналом від МІБ та формує багатоканальний (N) інформаційний сигнал, що передається для ЛА (взаємозв'язок) (фіг. 1, 2). Також, за допомогою МСПМ та МІБ створюється лазерний сигнал з просторовою модуляцією поляризації шляхом розведення лазерного випромінювання (несучої частоти νn) на два променя (νn1 та νn2) з поворотом плоскості поляризації на кут 90° в одному з них (фіг. 3). При цьому випромінювання апертури першого і другого каналів в апертурної плоскості U0V рознесені на відстані ρ. Різність ходу пучків до картинної плоскості ЛА Х0У змінюється вдовж осі X від точки до точки. Обумовлена цім різність фаз між поляризованими компонентами, що ортогональні, поля у картинної плоскості також змінюється від точки до точки. В залежності від різності фаз у картинній плоскості змінюється вигляд поляризації сумарного поля сигналу, що зондує від лінійної через еліптичну і циркулюючу до лінійної, ортогональної к начальної і т.д. Період зміни вигляду поляризації визначається базою між випромінювачами ρ та відстанню до картинної плоскості R. Розподіл інтенсивності в реєстрованому зображенні ЛА промодульовано по гармонійному закону з коефіцієнтом модуляції, дорівнює значенню ступеня поляризації випромінювання, що відбито, в даній ділянці поверхні ЛА. 2 UA 89593 U 5 10 15 20 25 30 35 40 45 50 55 60 Водночас сигнал частот міжмодових биттів Δνм, 2Δνм, 3Δνм та 6Δνм потрапляє на МБД, який створений з 4-х п'єзоелектричних дефлекторів. Парціальні ДС лазерного випромінювання попарно зустрічно сканують МБД у кожній з двох ортогональних площин (фіг. 1, 2). Період сканування задається БКД, який разом з Лн живляться від КЕ. Проходячи через ПРДО, груповий лазерний імпульсний сигнал пар частот ν5,ν4=Δνм, ν9,ν7=2Δνм, ν6,ν3=3Δνм та ν8,ν2=6Δνм фокусується в скануємі точки простору, оскільки здійснюється зустрічне сканування двома парами ДС лазерного випромінювання у кожній з двох ортогональних площин α і β (X і У). При цьому інформаційний сигнал на частотах N νn та сигнал з просторовою модуляцією поляризації νn1, νn2 проходять вдовж РСН (фіг. 2). Прийняті ПРМО від ЛА інформаційні та лазерні імпульсні сигнали і огинаючі сигнали ДС лазерного випромінювання, відбиті в процесі сканування чотирьох ДС, за допомогою фотодетектора перетворюються в електричні імпульсні сигнали на несучих частотах і різницевих частотах міжмодових биттів. Підсилені ШП вони розподіляються: - в МІБ для обробки інформації, що приймається від ЛА та відбитого лазерного сигналу з просторовою модуляцією поляризації, що зондує, від його поверхні; - по РП, що налаштовані на відповідні частоти міжмодових биттів Δνм від, 2Δνм від, 3Δνм від, 6Δνм від. При цьому, імпульсні сигнали радіочастоти, що надходять з РП Δνм від і РП 2Δνм від формують сигнал похибки по куту α, а РП 3Δνм від і РП 6Δνм від - по куту β. При відбитті від поверхні ЛА лазерного сигналу з просторовою модуляцією поляризації, що зондує змінюються амплітудні і фазові співвідношення між ортогонально поляризаційними компонентами, параметри їх поляризаційні і, відповідно, комплексні коефіцієнти когерентності відбитого поля. Просторовий розподіл поляризаційних характеристик такого відбитого сигналу по зміні контрасту модуляційної структури зображення несе також інформацію про типи матеріалів у складі поверхні ЛА, їх характеристики і тощо. Тому у МІБ здійснюється поляризаційна обробка поля, що приймається. Формування сигналу похибки по куту α полягає у наступному. Введення імпульсного сигналу (а) з опорного каналу Δνм, перетвореного ФІ1 у «пачки» опорних імпульсів на частоті Δνм оп, надходить на схему «І». Виділений і посилений імпульсний сигнал з РП Δνм від частоти міжмодових биттів Δνм від (фіг. 4, 5) детектується Дет у вигляді огинаючої сигналу, що змінюється за законом руху ДС лазерного випромінювання і, після проходження Ф, перетворюється у ФІ2 у точках переходів періодів сканування в імпульси (один імпульс за період сканування), надходить на тригер «1», перекидуючи його. У цей же час, виділений і посилений PП 2 Δνм від імпульсний сигнал частоти міжмодових биттів 2Δνм від детектується, виділяючи огинаючу сигналу, що змінюється за таким же законом і, проходячи Ф, перетворюється у ФІ2 у точках переходів періодів коливань в імпульси (один імпульс за період сканування) та надходить на тригер «0», встановлюючи його у вихідний стан. Задача виміру часового інтервалу з заданою точністю в схемі «І», полягає у встановленні критерію початку і кінця відліку часового інтервалу по визначених характеристиках значення імпульсних сигналів, що надходять на входи схеми «І». У зв'язку з тим, що передній фронт імпульсу досить малий у порівнянні з дозволом, що вимагається за часом, характерними значеннями сигналу, що визначають начало і кінець відліку часового інтервалу є граничне значення Uп (порогове значення напруги) (фіг. 5). Завдяки періодичному за цикл сканування відкриттю і закриттю тригером схеми «І» регулюється проходження імпульсів у схемі «І» від ФІ1, тобто відбувається виділення «пачок» імпульсів, число яких пропорційно куту відхилення ЛА від РСН (фіг. 5, 6). Підраховані лічильником імпульси перетворюються ЦАП в аналоговий сигнал похибки з необхідним знаком, що змішується у ФНЧ з імпульсним сигналом від каналу кутових швидкостей ЛА (б) для уточнення похибки збігу по кутах. Завдяки обліку вимірювальної інформації від каналу кутових швидкостей (б) у ФНЧ усуваються динамічна і флуктуаційна похибки фільтрації. Відфільтрований у ФНЧ і посилений підсилювачем сигналу похибки, отриманий сигнал відпрацьовується за допомогою виконавчого механізму (α), надходить від ПСП α на вхід ЕОМ та виділяється в ній у вигляді числа, пропорційного вимірюваному куту азимута α. Якщо ЛА знаходиться вище РСН, то на схему «І» першим надходить імпульс з ФІ2 міжмодової частоти Δνм від, а на тригер надходить другим імпульс з ФІ2 міжмодової частоти 2Δνм від (фіг. 1, 4-6). На схему «І» від тригера подається строб, тривалість якого пропорційна відхиленню ЛА від РСН. Цей часовий інтервал виміряється методом рахунку імпульсів частоти міжмодових биттів Δνм. Оскільки тривалість строба залежить лише від величини відхилення ЛА від РСН, а не від сторони відхилення, маємо схему визначення полярності сигналу похибки («+» або «-»). 3 UA 89593 U Якщо ЛА буде розташований нижче РСН, то першим надійде імпульс від ФІ2 з каналу 2Δνм а другим - з каналу Δνм від. Визначення знаку «+» або «-», або сторони відхилення ЛА від РСН (фіг. 1; 5 а, б) полягає у наступному. Якщо ЛА знаходиться вище РСН, то імпульс 1 (фіг. 1, 5 а) від каналу Δνм від випереджає імпульс 2 каналу 2Δνм від. Оскільки строб від тригера затримується на час, що перевищує тривалість імпульсу 1 (або 2), то схема збігів «І» не спрацьовує, тому що імпульс 1 не збігається в часі з даним стробом. Знак сигналу похибки по куту α залишається позитивним («+»). Якщо ЛА знаходиться нижче РСН (фіг. 5 б), то імпульс 1 відстає від імпульсу 2, тому він збігається в часі зі стробом. Схема «І» спрацьовує і змінює знак («-» або полярність) напруги сигналу похибки по куту α. Імпульс зі схеми «І» подається на знаковий розряд лічильника імпульсів з частотою Δνм. Число імпульсів у лічильнику пропорційно куту відхилення α від РСН. Форматування сигналу похибки по куту β відбувається таким же чином, як для сигналу похибки по куту α. Виконавчі механізми ВМα і ВМβ розвертають приймально-передавальну платформу таким чином, щоб ЛА знаходився на РСН запропонованого каналу, тобто на РСН сумарної ДС лазерного випромінювання (фіг. 2, 6). Оптико-електронний модуль постійно здійснює у денних і нічних умовах у видимому та інфрачервоному діапазонах спостереження за ЛА, який супроводжується. Відображення інформації, що приймається (передається) від ЛА, об'єктивний контроль та обробка (вимірювання) кутів азимута α і міста β відбувається в ЕОМ. Для збереження інформації, яка оброблена під час проведення випробувань ЛА, в пам'яті ЕОМ використовується база даних - сукупність взаємопов'язаних даних, організованих у відповідності до схеми даних таким чином, щоб з ними міг працювати користувач. Підвищення швидкості обробки інформації, яка поступає на ЕОМ здійснюється за рахунок використання методів та моделей паралельної часу параметризованої обробки даних. В разі необхідності виявлення ЛА у заданої точці простору груповий сигнал, який складений з частот міжмодових биттів і несучих частот νn, сканується у заданій зоні за заданим законом сканування у вигляді сумарної ДС лазерного випромінювання за допомогою модифікованого блока дефлекторів, де кут та напрямок відхилення сумарної ДС задається БКД (фіг. 1, 2). Кількість інформаційних каналів (N), що формуються, залежить від кількості мод (несучих частот νn), які мають необхідні вихідні характеристики для використання. Джерела інформації 1. Патент на корисну модель № 51041, Україна, МПК G01S 17/42, G01S 17/66. Канал автоматичного супроводження літальних апаратів за напрямком з можливістю формування та обробки зображення ЛА. /О.В. Коломійцев, Г.В. Альошин, Д.Г. Васильев та ін. - № u201001252; заяв. 08.02.2010; опубл. 25.06.2010; Бюл. № 12. - 12 с. 2. Патент на корисну модель № 74264, Україна, MПK G01S 17/42, G01S 17/66. Канал автоматичного супроводження літальних апаратів за напрямком з МСПМ та можливістю формування і обробки зображення ЛА для ЛІВС полігонного випробувального комплексу. /О.В. Коломійцев, О.С. Балабуха, Д.Г. Васильєв та ін. - № u201203425; заяв. 22.03.2012; опубл. 25.10.2012; Бюл. № 20. - 7 с. 3. Патент на корисну модель № 55645, Україна, МПК G01S 17/42, G01S 17/66. Частотночасовий метод пошуку, розпізнавання та вимірювання параметрів руху літального апарату. /О.В. Коломійцев - № u201005225; заяв. 29.04.2010; опубл. 27.12.2010; Бюл. № 24. - 14 с. від, 5 10 15 20 25 30 35 40 45 ФОРМУЛА КОРИСНОЇ МОДЕЛІ 50 55 Канал автоматичного супроводження літальних апаратів за напрямком з оптико-електронним модулем та можливістю формування і обробки зображення ЛА для ЛІВС полігонного випробувального комплексу, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, модифікований селектор подовжніх мод, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, модифікований інформаційний блок, резонансні підсилювачі, налаштовані на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери "1"|"0", схеми I, лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронну обчислювальну машину та а введення опорного сигналу з частотою Δνм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) літального апарату для уточнення 4 UA 89593 U похибки збігу по кутах, який відрізняється тим, що додатково введено оптико-електронний модуль, який складений з телевізійного та інфрачервоного каналів. 5 UA 89593 U 6 UA 89593 U 7 UA 89593 U 8 UA 89593 U Комп’ютерна верстка Д. Шеверун Державна служба інтелектуальної власності України, вул. Урицького, 45, м. Київ, МСП, 03680, Україна ДП “Український інститут промислової власності”, вул. Глазунова, 1, м. Київ – 42, 01601 9

Дивитися

Додаткова інформація

Автори англійською

Kolomiitsev Oleksii Volodymyrovych, Sachuk Ihor Ivanovych, Avchinnikov Yevhen Oleksiiovych, Kopylov Oleksandr Oleksiiovych, Kremeshnyi Oleksandr Ivanovych, Orlov Sergii Volodymyrovych

Автори російською

Коломийцев Алексей Владимирович, Сачук Игорь Иванович, Авчинников Евгений Алексеевич, Копылов Александр Алексеевич, Кремешный Александр Иванович, Орлов Сергей Владимирович

МПК / Мітки

МПК: G01S 17/66, G01S 7/42

Мітки: полігонного, літальних, комплексу, модулем, канал, напрямком, зображення, формування, супроводження, можливістю, оптико-електронним, апаратів, автоматичного, випробувального, лівс, обробки

Код посилання

<a href="https://ua.patents.su/11-89593-kanal-avtomatichnogo-suprovodzhennya-litalnikh-aparativ-za-napryamkom-z-optiko-elektronnim-modulem-ta-mozhlivistyu-formuvannya-i-obrobki-zobrazhennya-la-dlya-livs-poligonnogo-vipro.html" target="_blank" rel="follow" title="База патентів України">Канал автоматичного супроводження літальних апаратів за напрямком з оптико-електронним модулем та можливістю формування і обробки зображення ла для лівс полігонного випробувального комплексу</a>

Подібні патенти