Канал вимірювання кутових швидкостей літальних апаратів з оптико-електронним модулем та розширеними можливостями для лівс полігонного випробувального комплексу
Номер патенту: 91560
Опубліковано: 10.07.2014
Автори: Гордієнко Андрій Миколайович, Орлов Сергій Володимирович, Альошин Геннадій Васильович, Коломійцев Олексій Володимирович, Рондін Юрій Петрович, Скорін Юрій Іванович, Тюрін Віталій Вікторович, Іванець Михайло Григорович, Носик Андрій Михайлович, Сачук Ігор Іванович
Формула / Реферат
Канал вимірювання кутових швидкостей літальних апаратів з оптико-електронним модулем та розширеними можливостями для ЛІВС полігонного випробувального комплексу, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, модифікований селектор подовжніх мод, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) літального апарату, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, тригер "1"│"0", схеми I, реверсивні лічильники, схеми порівняння та Δvm оп - введення опорних сигналів з частотами міжмодових биттів (Δvm оп, 2Δvm оп 3Δvm оп, 6Δvm оп) від передавального лазера, який відрізняється тим, що додатково введено оптико-електронний модуль, який складений з телевізійного та інфрачервоного каналів.
Текст
Реферат: Канал вимірювання кутових швидкостей літальних апаратів з оптико-електронним модулем та розширеними можливостями для ЛІВС полігонного випробувального комплексу, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, модифікований селектор подовжніх мод, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) літального апарату, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, тригери "1"|"0", схеми "і", реверсивні лічильники, схеми порівняння та Δvm оп - введення опорних сигналів з частотами міжмодових биттів (Δvm оп, 2Δvm оп 3Δvm оп, 6Δvm оп) від передавального лазера, який відрізняється тим, що додатково введено оптико-електронний модуль, який складений з телевізійного та інфрачервоного каналів. UA 91560 U (12) UA 91560 U UA 91560 U 5 10 15 20 25 30 35 40 45 50 55 Запропонована корисна модель належить до галузі електрозв'язку і може бути використана для синтезу лазерної інформаційно-вимірювальної системи (ЛІВС) з частотно-часовим методом (ЧЧМ) пошуку, розпізнавання та вимірювання параметрів руху літального апарату (ЛА). Відомий "Канал вимірювання кутових швидкостей літальних апаратів з розширеними можливостями" [1], який містить керуючий елемент (КЕ), блок керування дефлекторами (БКД), лазер з накачкою (Лн), модифікований селектор подовжніх мод (МСПМ), модифікований блок дефлекторів (МБД), передавальну оптику (ПРДО), приймальну оптику (ПРМО), фотодетектор (ФТД), широкосмуговий підсилювач (ШП), інформаційний блок з розширеними можливостями (ІБРМ) з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі (РП), настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, тригери "1"|"0", схеми I, реверсивні лічильники (РЛч), схеми порівняння (СП), електронно-цифрову обчислювальну машину (ЕЦОМ) та Δvm оп - введення опорних сигналів з частотами міжмодових биттів (Δvm оп, 2Δvm оп, 3Δvm оп, 6Δvm оп) від передавального лазера. Недоліком відомого каналу є те, що він не забезпечує збереження інформації, яка оброблена під час проведення випробувань ЛА. Найбільш близьким до запропонованого технічним рішенням, вибраним як прототип є "Канал вимірювання кутових швидкостей літальних апаратів з МСПМ та розширеними можливостями для ЛІВС полігонного випробувального комплексу" [2], який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, модифікований селектор подовжніх мод, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, тригери "1"|"0", схеми I, реверсивні лічильники, схеми порівняння, електронну обчислювальну машину (ЕОМ) та Δvm оп - введення опорних сигналів з частотами міжмодових биттів (Δvm оп, 2Δvm оп, 3Δvm оп, 6Δvm оп) від передавального лазера. Недоліком каналу-прототипу є те, що він не здійснює об'єктивний контроль у денних і нічних умовах під час проведення випробувань ЛА. В основу корисної моделі поставлена задача створити канал вимірювання кутових швидкостей літальних апаратів з оптико-електронним модулем та розширеними можливостями для ЛІВС полігонного випробувального комплексу, який дозволить здійснювати виявлення ЛА, високоточне вимірювання кутових швидкостей (прискорення α' і β') у широкому діапазоні дальностей, починаючи з початкового моменту його польоту, багатоканальний (N) інформаційний взаємозв'язок з ЛА на несучих частотах vn, об'єктивний контроль, розширення функціональних можливостей під час проведення випробувань ЛА у нічний час, збереження інформації, яка оброблена під час проведення випробувань ЛА та, завдяки використання поляризаційних ознак ЛА, що отримуються, детально розпізнавати його за короткий час. Поставлена задача вирішується за рахунок того, що у канал-прототип, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, модифікований селектор подовжніх мод, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, тригери "1"|"0", схеми I, реверсивні лічильники, схеми порівняння, електронну обчислювальну машину та Δvm оп - введення опорних сигналів з частотами міжмодових биттів (Δvm оп, 2Δvm оп, 3Δvm оп, 6Δvm оп) від передавального лазера, додатково введено оптикоелектронний модуль (OEM), який складений з телевізійного та інфрачервоного каналів. Побудова каналу вимірювання кутових швидкостей літальних апаратів з оптикоелектронним модулем та розширеними можливостями для ЛІВС полігонного випробувального комплексу пов'язана з використанням синхронізованого одномодового богаточастотного випромінювання єдиного лазера-передавача та ЧЧМ [3]. Технічний результат, який може бути отриманий при здійсненні корисної моделі полягає у виявленні ЛА, високоточному вимірюванні кутової складової швидкості (прискорення α' і β') у широкому діапазоні дальностей, починаючи з початкового моменту його польоту, багатоканальному (N) інформаційному взаємозв'язку з ЛА на несучих частотах vn, здійсненні об'єктивного контролю у денних і нічних умовах, збереженні інформації, яка оброблена під час проведення випробувань та розширенні набору поляризаційних ознак розпізнавання ЛА, що отримуються, підвищенні ефективності і скороченні часу на його розпізнавання. 1 UA 91560 U 5 10 15 20 25 30 35 40 45 50 55 60 На фіг. 1 приведена узагальнена структурна схема запропонованого каналу, де: 1 - для визначення вимірювальної інформації; 2 - для формування команд керування ЛА і обробки інформації, що отримується від нього; 3 - для обробки відеоінформації у видимому і інфрачервоному діапазонах; Δvm оп··· - введення опорних сигналів з частотами міжмодових биттів (Δvm оп, 2Δvm оп, 3Δvm оп, 6Δvm оп) від передавального лазера; б - введення сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна. На фіг. 2 приведено створення рівносигнального напрямку (РСН) та сканування сумарною діаграмою спрямованості (ДС) лазерного випромінювання у невеликому куті і окремо 4-ма ДС в ортогональних площинах. На фіг. 3 приведено створення лазерного сигналу з просторовою модуляцією поляризації. На фіг. 4 приведені епюри напруг з виходів блоків запропонованого каналу. Запропонований канал вимірювання кутових швидкостей літальних апаратів з оптикоелектронним модулем та розширеними можливостями для ЛІВС полігонного випробувального комплексу містить керуючий елемент 1, блок керування дефлекторами 2, лазер з накачкою 3, модифікований селектор подовжніх мод 4, модифікований блок дефлекторів 5, передавальну оптику 6, оптико-електронний модуль, який складений з телевізійного та інфрачервоного каналів 7, приймальну оптику 8, фотодетектор 9, широкосмуговий підсилювач 10, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна 11, резонансні підсилювачі 12, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів (ФІ 1-13, ФІ 2-14, ФІ 3-15), тригери "1"|"0" 16, схеми "і" 17, реверсивні лічильники 18, схеми порівняння 19, електронну обчислювальну машину 20 та Δvm оп - введення опорних сигналів з частотами міжмодових биттів (Δvm оп, 2Δvm оп, 3Δvm оп, 6Δvm оп) від передавального лазера. Робота запропонованого каналу вимірювання кутових швидкостей літальних апаратів з оптико-електронним модулем та розширеними можливостями для ЛІВС полігонного випробувального комплексу полягає у наступному. Із синхронізованого одномодового багаточастотного спектра випромінювання лазерапередавача (Лн) за допомогою МСПМ виділяються необхідні пари частот і окремі частоти для створення: - багатоканального (N) інформаційного зв'язку та лазерного сигналу з просторовою модуляцією поляризації, за умови використання сигналу з подовжніх мод (несучих частот vn); - рівносигнального напрямку на основі формування сумарної ДС лазерного випромінювання, завдяки 4-м парціальним діаграмам спрямованості, які частково перетинаються за умови використання комбінацій подовжніх мод ("підфарбованих" різницевими частотами міжмодових биттів) Δv54=v5-v4=Δvм, Δv97=v9-v7=2Δvм, Δv63=v6-v3=3Δvм, Δv82=v8-v2=6Δvм. Також, за допомогою МСПМ та ІБРМ створюється лазерний сигнал з просторовою модуляцією поляризації шляхом створення лазерного випромінювання з двох несучих частот (vn1 та vn2) у вигляді двох променів з вертикальною (vn1) та горизонтальною (vn2) поляризацією (фіг. 3). При цьому випромінювання апертури першого і другого поляризаційних каналів в апертурної плоскості V0U рознесені на відомій відстані Δvq. Різність ходу пучків до картинної плоскості ЛА Х0У змінюється вдовж осі X від точки до точки. Обумовлена цим різність фаз (амплітуд) між поляризованими компонентами, що ортогональні, поля у картинної плоскості також змінюється від точки до точки. В залежності від різності фаз (амплітуд) у картинній плоскості змінюється вигляд поляризації сумарного поля сигналу, що зондує від лінійної через еліптичну і циркулюючу до лінійної, ортогональної до початкової і т.д. Період зміни вигляду поляризації визначається базою між випромінювачами Δvq та відстанню до картинної плоскості R. Розподіл інтенсивності в реєстрованому зображенні ЛА промодульовано по гармонійному закону з коефіцієнтом модуляції, дорівнює значенню ступеня поляризації випромінювання, що відбито в даній ділянці поверхні ЛА. Груповий сигнал, який складений з несучих частот vn, минаючи МБД, потрапляє на ПРДО, де змішується (модулюється) з інформаційним сигналом від ІБРМ та формує багатоканальний (N) інформаційний сигнал, що передається на ЛА (взаємозв'язок) (фіг. 1, 2). Водночас сигнал частот міжмодових биттів Δvм, 2Δvм, 3Δvм та 6Δvм потрапляє на МБД, який створений з 4-х п'єзоелектричних дефлекторів. Парціальні ДС лазерного випромінювання попарно зустрічно сканують МБД у кожній з двох ортогональних площин (фіг. 1, 2). Період сканування задається БКД, який разом з Лн живляться від керуючого елемента. 2 UA 91560 U 5 10 15 20 25 30 35 40 45 50 55 Проходячи через ПРДО, груповий лазерний імпульсний сигнал пар частот v5,v4=Δvм, v9,v7=2Δvм, v6,v3=3Δvм та v8,v2=6Δvм фокусується в скановані точки простору, оскільки здійснюється зустрічне сканування двома парами ДС лазерного випромінювання у кожній з двох ортогональних площин α і β або X і У. При цьому інформаційний сигнал та лазерний сигнал з просторовою модуляцією поляризації на несучих частотах vn проходять вдовж РСН. Прийняті ПРМО від ЛА інформаційні та лазерні імпульсні сигнали і огинаючі сигнали ДС лазерного випромінювання, відбиті в процесі сканування чотирьох ДС, за допомогою фотодетектора перетворюються в електричні імпульсні сигнали на несучій частоті і різницевих частотах міжмодових биттів. Підсилені ШП вони розподіляються: - в ІБРМ для обробки інформації, що приймається від ЛА та відбитого лазерного сигналу з просторовою модуляцією поляризації, що зондує, від його поверхні; - по РП, що настроєні на відповідні частоти міжмодових биттів Δvм від, 2Δvм від, 3Δvм від, 6Δvм від. При відбитті від поверхні ЛА лазерного сигналу з просторовою модуляцією поляризації, що зондує, змінюються амплітудні і фазові співвідношення між ортогонально поляризаційними компонентами, параметри їх поляризаційні і, відповідно, комплексні коефіцієнти когерентності відбитого поля. Просторовий розподіл поляризаційних характеристик такого відбитого сигналу по зміні контрасту модуляційної структури зображення несе також інформацію про типи матеріалів у складі поверхні ЛА, їх характеристики і тощо, що відображається у ЕОМ. Тому у ІБРМ також здійснюється поляризаційна обробка поля, що приймається. Імпульсні сигнали радіочастоти, що надходять з РП 1 і РП 2 (РП Δvм від і РП 2Δvм від) формують сигнал прискорення α', а РП 3 і РП 4 (РП 3Δvм від і РП 6Δvм від) - прискорення β'. Формування сигналу прискорення α' полягає у наступному. Виділені імпульси ФІ 1 першої І лінії від опорної частоти Δvm оп надходять на реверсивний лічильник (РЛч 1) (фіг. 1, 4). У цей же час відбитий від ЛА оптичний сигнал частоти міжмодових биттів, який перетворюється ФТД у радіочастоту міжмодових биттів Δvм від, змінюється по закону руху ДС лазерного випромінювання, перетворюється у другій лінії II ФІ 2 у точках переходів півперіодів сканування в імпульси (один імпульс за півперіод сканування), надходить на тригер "1" та запускає його першим імпульсом. Перший імпульс, який надходить від тригера відкриває РЛч для рахування імпульсів від ФІ 1 і схему I, для перезапису на схему порівняння. Другий імпульс від тригера надходить на реверсивний вхід того ж РЛч, який здійснює зворотній рахунок імпульсів, що надходять через нього. Третій і т.д. імпульси надходять на тригер та роблять аналогічні дії першому. Другий імпульс не надходить на схему I, а третій імпульс надходить, як і перший, на ФІ 3, схему "І", пропускає різницеве число на схему порівняння і т.д. Таким чином, в РЛч записується число імпульсів, порівняно різності подовженого та покороченого (руху ДС) півперіоду сканування. Півперіод сканування подовжується тоді, коли швидкість руху ЛА співпадає зі швидкістю руху ДС лазерного випромінювання, а коли не співпадає - скорочується (фіг. 4). Формування сигналу прискорення β' відбувається таким же чином, як для прискорення α'. Оптико-електронний модуль постійно здійснює у денних і нічних умовах у видимому та інфрачервоному діапазонах спостереження за ЛА, який супроводжується. Відображення інформації, що приймається (передається) від ЛА, об'єктивний контроль та обробка (вимірювання) кутової швидкості відбувається в ЕОМ. Для збереження інформації, яка оброблена під час проведення випробувань ЛА, в пам'яті ЕОМ використовується база даних – сукупність взаємопов'язаних даних, організованих у відповідності до схеми даних таким чином, щоб з ними міг працювати користувач. Підвищення швидкості обробки інформації, яка поступає на ЕОМ здійснюється за рахунок використання методів та моделей паралельної часу параметризованої обробки даних. Вимірювальна інформація про тангенціальну швидкість (кутові швидкості) ЛА використовується в ІБРМ, де завдяки додаткової обробці елементів поляризаційної матриці розсіяння ЛА від отриманого поляризаційного поля (суми сигналів різної поляризації) забезпечується точне значення кутових швидкостей ЛА, розширюється набір ознак його розпізнавання, підвищується ефективність та скорочується час на розпізнавання ЛА, що супроводжується. В разі необхідності виявлення ЛА у заданій точці простору груповий сигнал, який складений з частот міжмодових биттів і несучих частот vn, сканується у заданій зоні за заданим законом сканування у вигляді сумарної ДС лазерного випромінювання за допомогою модифікованого блока дефлекторів, де кут та напрямок відхилення сумарної ДС задається блоком керування дефлекторів (фіг. 1, 2). 3 UA 91560 U 5 10 15 20 Кількість інформаційних каналів (N), що формуються, залежить від кількості мод (несучих частот vn), які мають необхідні вихідні характеристики для використання. Формування сумарної ДС лазерного випромінювання, створення РСН, інформаційного каналу для каналу, що пропонується, пов'язано із задоволенням жорстких вимог, які пред'являються до спектру випромінювання одномодового багаточастотного лазерапередавача, тобто високоточної синхронізації подовжніх мод і стабілізації частот міжмодових биттів. Джерела інформації: 1. Патент на корисну модель № 60335, Україна, МПК G01S 17/42, G01S 17/66. Канал вимірювання кутових швидкостей літальних апаратів з розширеними можливостями. /О.В. Коломійцев, Г.В. Альошин, Д.Г. Васильєв та ін. - № u201101747; заяв. 14.02.2011; опубл. 10.06.2011; Бюл. № 11. - 12 с. 2. Патент на корисну модель № 75133, Україна, МПК G01S17/42, G01S17/66. Канал вимірювання кутових швидкостей літальних апаратів з МСПМ та розширеними можливостями для ЛІВС полігонного випробувального комплексу. /О.В. Коломійцев, О.С. Балабуха, С.І. Клівець та та ін. - № u201204800; заяв. 17.04.2012; опубл. 26.11.2012; Бюл. № 22. - 5 с. 3. Патент на корисну модель №55645, Україна, МПК G01S17/42, G01S17/66. Частотночасовий метод пошуку, розпізнавання та вимірювання параметрів руху літального апарату. /О.В. Коломійцев - № u201005225; заяв. 29.04.2010; опубл. 27.12.2010; Бюл. № 24. - 14 с. ФОРМУЛА КОРИСНОЇ МОДЕЛІ 25 30 Канал вимірювання кутових швидкостей літальних апаратів з оптико-електронним модулем та розширеними можливостями для ЛІВС полігонного випробувального комплексу, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, модифікований селектор подовжніх мод, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) літального апарату, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, тригер "1"│"0", схеми I, реверсивні лічильники, схеми порівняння та Δvm оп - введення опорних сигналів з частотами міжмодових биттів (Δvm оп, 2Δvm оп 3Δvm оп, 6Δvm оп) від передавального лазера, який відрізняється тим, що додатково введено оптико-електронний модуль, який складений з телевізійного та інфрачервоного каналів. 4 UA 91560 U 5 UA 91560 U 6 UA 91560 U Комп’ютерна верстка І. Скворцова Державна служба інтелектуальної власності України, вул. Урицького, 45, м. Київ, МСП, 03680, Україна ДП “Український інститут промислової власності”, вул. Глазунова, 1, м. Київ – 42, 01601 7
ДивитисяДодаткова інформація
Автори англійськоюKolomiitsev Oleksii Volodymyrovych, Sachuk Ihor Ivanovych, Alioshyn Hennadii Vasyliovych, Ivanets Mykhailo Hryhorovych, Nosyk Andrii Mykhailovych, Orlov Sergii Volodymyrovych, Rondin Yurii Petrovych, Skorin Yurii Ivanovych, Tiurin Vitalii Ivanovich
Автори російськоюКоломийцев Алексей Владимирович, Сачук Игорь Иванович, Алешин Геннадий Васильевич, Иванець Михаил Григорьевич, Носик Андрей Михайлович, Орлов Сергей Владимирович, Рондин Юрий Петрович, Скорин Юрий Иванович, Тюрин Виталий Иванович
МПК / Мітки
МПК: G01S 17/66, G01S 17/42
Мітки: розширеними, можливостями, канал, лівс, кутових, літальних, вимірювання, випробувального, оптико-електронним, комплексу, апаратів, швидкостей, модулем, полігонного
Код посилання
<a href="https://ua.patents.su/9-91560-kanal-vimiryuvannya-kutovikh-shvidkostejj-litalnikh-aparativ-z-optiko-elektronnim-modulem-ta-rozshirenimi-mozhlivostyami-dlya-livs-poligonnogo-viprobuvalnogo-kompleksu.html" target="_blank" rel="follow" title="База патентів України">Канал вимірювання кутових швидкостей літальних апаратів з оптико-електронним модулем та розширеними можливостями для лівс полігонного випробувального комплексу</a>
Попередній патент: Спосіб захисту конструкції від резонансу при вібраційних навантаженнях
Наступний патент: Канал вимірювання радіальної швидкості літальних апаратів з оптико-електронним модулем та розширеними можливостями для лівс полігонного випробувального комплексу
Випадковий патент: Універсальна електрична піч