Завантажити PDF файл.

Формула / Реферат

Канал автоматичного супроводження літальних апаратів за напрямком з БСПМ та можливістю формування і обробки зображення ЛА, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, багатофункціональний селектор подовжніх мод, блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач (ШП), резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери ("1"|"0"), схеми "і", лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронно-цифрову обчислювальну машину та а-введення опорного сигналу з частотою  передавального лазера, б-введення сигналу від каналу оцінки тангенціальної складової швидкості (кутових швидкостей) літального апарата для уточнення похибки збігу по кутах, який відрізняється тим, що після ШП замість інформаційного блока введено модифікований інформаційний блок.

Текст

Канал автоматичного супроводження літальних апаратів за напрямком з БСПМ та можливістю формування і обробки зображення ЛА, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, багатофункціональний 3 механізми, електронно-цифрову обчислювальну машину та а - введення опорного сигналу з частотою м передавального лазера, б - введення сигналу від каналу оцінки тангенціальної складової швидкості (кутових швидкостей) ЛА для уточнення похибки збігу по кутах, інформаційний блок для інформаційного взаємозв'язку з ЛА. Недоліком каналу-прототипу є те, що він не може формувати та обробляти зображення ЛА. В основу корисної моделі поставлена задача створити канал автоматичного супроводження літальних апаратів за напрямком з БСПМ та можливістю формування і обробки зображення ЛА, який дозволить здійснювати багатоканальний (N) інформаційний взаємозв'язок з ЛА на несучих частотах  n і частоті міжмодових биттів, точне і стійке кутове автосупроводження при одночасному його вимірюванні кутів азимута  і міста  у широкому діапазоні дальностей, починаючи з початкового моменту польоту ЛА та, в разі необхідності, формувати і обробляти зображення ЛА. Поставлена задача вирішується за рахунок того, що у відомий канал-прототип, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, багатофункціональний селектор подовжніх мод, блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, резонансні підсилювачі настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери („1"|„0"), схеми „i", лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронно-цифрову обчислювальну машину та а - введення опорного сигналу з частотою м передавального лазера, б - введення сигналу від каналу оцінки тангенціальної складової швидкості (кутових швидкостей) ЛА для уточнення похибки збігу по кутам, інформаційний блок для інформаційного взаємозв'язку з ЛА додатково після ШП замість ІБ введено модифікований інформаційний блок (МІБ). Побудова каналу автоматичного супроводження літальних апаратів за напрямком пов'язана з використанням ЧЧМ [3] та синхронізованого одномодового богаточастотного випромінювання єдиного лазера-передавача. Технічний результат, який може бути отриманий при здійсненні корисної моделі полягає в стійкому кутовому автосупроводженні ЛА при одночасному високоточному вимірюванні кутів азимута і міста у широкому діапазоні дуальностей, починаючи з початкового моменту його польоту, багатоканальному (N) інформаційному взаємозв'язку з ЛА та, в разі необхідності, формуванні і обробці його зображення. На Фіг.1 приведена узагальнена структурна схема запропонованого каналу АСН, де: І - вимірювальний сигнал; II - інформаційний сигнал та сигнал із просторовою модуляцією поляризації; а введення опорного сигналу з частотою м 3м  лазера-передавача; б - введення сигналу від каналу оцінки тангенціальної складової швид 60339 4 кості (кутових швидкостей  і  ) ЛА для уточнення похибки збігу по кутам каналів. На Фіг.2 приведено створення рівносигнального напрямку (РСН) та сканування 4-мя діаграмами спрямованості (ДС) лазерного випромінювання в ортогональних площинах. На Фіг.3 приведено створення лазерного сигналу із просторовою модуляцією поляризації. На Фіг.4 приведені епюри напруг з виходів блоків каналу АСН. На Фіг.5 приведені епюри напруг з виходів блоків каналу АСН, які визначають полярність, де: а) - для визначення знаку "+"; б) - для визначення знаку "-". На Фіг.6 приведено кут відхилення ЛА від РСН відносно ЛІВС. Запропонований канал автоматичного супроводження літальних апаратів за напрямком з БСПМ та можливістю формування і обробки зображення ЛА містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, багатофункціональний селектор подовжніх мод, блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, модифікований інформаційний блок, широкосмуговий підсилювач, резонансні підсилювачі настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери („1"|„0"), схеми „і", лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронноцифрову обчислювальну машину та а - введення опорного сигналу з частотою м передавального лазера, б - введення сигналу від каналу оцінки тангенціальної складової швидкості (кутових швидкостей) ЛА для уточнення похибки збігу по кутах. Робота запропонованого каналу автоматичного супроводження літальних апаратів за напрямком полягає в наступному. Із синхронізованого одномодового багаточастотного спектра випромі3+ нювання YAG:Nd - лазера (або лазера з найбільш кращими показниками) (Лн) за допомогою БСПМ виділяються необхідні пари частот для створення: - багатоканального (N) інформаційного зв'язку, за умови використання сигналу комбінації подовжніх мод (на різницевій частоті міжмодових биттів 101  10  1  9м ), а також подовжніх мод (несучих частот  n ); - лазерного сигналу із просторовою модуляцією поляризації, за умови використання сигналу з подовжньої моди  n (в подальшому n1,n2 ); - рівносигнального напрямку на основі формування сумарної ДС лазерного випромінювання, завдяки частково перетинаючих 4-х парціальних ДС, за умови використання різницевих частот міжмодових биттів 54  5   4  м, 97  9  7  2м,  63   6  3  3м, 82  8   2  6м. 5 Груповий сигнал, який складений із частоти міжмодових биттів 9м і несучих частот  n , минаючи БД, потрапляє на ПРДО, де змішується (модулюється) з інформаційним сигналом від МІБ та формує багатоканальний (N) інформаційний сигнал, що передається для ЛА (взаємозв'язок) (Фіг.1, 2). Також, за допомогою БСПМ та модифікованого інформаційного блока створюється лазерний сигнал із просторовою модуляцією поляризації шляхом розведення лазерного випромінювання (несучої частоти  n ) на два променя ( n1 та n2 ) з поворотом плоскості поляризації на кут 90° в одному з них (Фіг.3). При цьому випромінювання апертури першого і другого каналів в апертурної плоскості U0V рознесені на відстані  . Різність ходу пучків до картинної плоскості ЛА Х0У змінюється вдовж осі X від точки до точки. Обумовлена цім різність фаз між поляризованими компонентами, що ортогональні, поля у картинної плоскості також змінюється від точки до точки. В залежності від різності фаз у картинній плоскості змінюється вигляд поляризації сумарного поля сигналу, що зондує від лінійної через еліптичну і циркулюючу до лінійної, ортогональної к начальної і т.д. Період зміни вигляду поляризації визначається базою між випромінювачами  та відстанню до картинної плоскості R. Розподіл інтенсивності в реєстрованому зображенні ЛА промодульовано по гармонійному закону з коефіцієнтом модуляції, дорівнює значенню ступеня поляризації випромінювання, що відбито, в даній ділянці поверхні ЛА. Водночас сигнал частот міжмодових биттів м,2м,3м та 6м потрапляє на БД, який створений з 4-х п'єзоелектричних дефлекторів. Парціальні ДС лазерного випромінювання попарно зустрічно сканують БД у кожній із двох ортогональних площин (Фіг.1, 2). Період сканування задається БКД, який разом з Лн живляться від КЕ. Проходячи через ПРДО, груповий лазерний імпульсний сигнал пар частот: та 5, 4  м, 9, 7  2м, 6, 3  3м 8, 2  6м фокусується в скануємі точки простору, оскільки здійснюється зустрічне сканування двома парами ДС лазерного випромінювання у кожній із двох ортогональних площин  і  або X і У. При цьому частоти  n , інформаціний сигнал 10 , 1  9м та сигнал із просторовою модуляцією поляризації n1,n2 проходять вдовж РСН (Фіг.2, 3). Прийняті ПРМО від ЛА інформаційні та лазерні імпульсні сигнали і огинаючи сигнали ДС лазерного випромінювання, відбиті в процесі сканування чотирьох ДС, за допомогою фотодетектора перетворюються в електричні імпульсні сигнали на несучих частотах і різницевих частотах міжмодових биттів. Підсилені ШП вони розподіляються: - в МІБ для обробки інформації, що приймається від ЛА та відбитого лазерного сигналу із просторовою модуляцією поляризації, що зондує, від його поверхні; 60339 6 - по РП, що настроєні на відповідні частоти міжродових биттів: м від, 2м від, 3м від, 6м від. При цьому, імпульсні сигнали радіочастоти, що надходять з PП м і PП2 м формують сигнал похибки по куту  , а РП3 м і РП6 м - по куту  . При відбитті лазерного сигналу із просторовою модуляцією поляризації, що зондує, від поверхні ЛА змінюються амплітудні і фазові співвідношення між ортогонально поляризаційними компонентами, параметри їх поляризаційні і, відповідно, комплексні коефіцієнти когерентності відбитого поля. Просторовий розподіл поляризаційних характеристик такого відбитого сигналу по зміні контрасту модуляційної структури зображення несе також інформацію про типи матеріалів у складі поверхні ЛА, їх характеристики і тощо. Тому у МІБ здійснюється поляризаційна обробка поля, що приймається. Формування сигналу похибки по куту  полягає в наступному. Введення імпульсного сигналу (а) з опорного каналу м , перетвореного ФІ1 у «пачки» опорних імпульсів на частоті м оп , надходить на схему «І». Виділений і посилений імпульсний сигнал з РП м від частоти міжмодових биттів м від (Фіг.4, 5) детектується Дет у виді огинаючої сигналу, що змінюється за законом руху ДС лазерного випромінювання і, після проходження Ф, перетворюється у ФІ2 у точках переходів періодів сканування в імпульси (один імпульс за період сканування), надходить на тригер «1», перекидуючи його. У цей же час, виділений і посилений РП2 м від імпульсний сигнал частоти міжмодових биттів 2м від детектується, виділяючи огинаючу сигналу, що змінюється за таким же законом і, проходячи Ф, перетворюються у ФІ2 у точках переходів періодів коливань в імпульси (один імпульс за період сканування) та надходить на тригер «0», встановлюючи його у вихідний стан. Задача виміру часового інтервалу із заданою точністю в схемі «І», полягає у встановленні критерію початку і кінця відліку часового інтервалу по визначених характеристиках значення імпульсних сигналів, що надходять на входи схеми «І». У зв'язку з тим, що передній фронт імпульсу досить малий у порівнянні з дозволом, що вимагається за часом, характерними значеннями сигналу, що визначають начало і кінець відліку часового інтервалу є граничне значення Uп (порогове значення напруги) (Фіг.5). Завдяки періодичному за цикл сканування відкриттю і закриттю тригером схеми «І» регулюється проходження імпульсів у схемі «І» від ФІ1, тобто відбувається виділення «пачок» імпульсів, число яких пропорційно куту відхилення ЛА від РСН (Фіг.5, 6). Підраховані лічильником імпульси перетворюються ЦАП в аналоговий сигнал похибки з необхідним знаком, що змішується у ФНЧ з імпульсним сигналом від каналу кутових швидкостей ЛА (б) для уточнення похибки збігу по кутах. За 7 вдяки обліку вимірювальної інформації від каналу кутових швидкостей (б) у ФНЧ усуваються динамічна і флуктуаційна похибки фільтрації. Відфільтрований у ФНЧ і посилений підсилювачем сигналу похибки, отриманий сигнал відпрацьовується за допомогою виконавчого механізму   , надходить від ПСП  на вхід ЕЦОМ та виділяється в ній у вигляді числа, пропорційного вимірюваному куту азимута  . Якщо ЛА знаходиться вище РСН, то на схему «І» першим надходить імпульс з ФІ2 міжмодової частоти м від , а на тригер надходить другим імпульс з ФІ2 міжмодової частоти 2м від (Фіг.1,46). На схему «І» від тригера подається строб, тривалість якого пропорційна відхиленню ЛА від РСН. Цей часовий інтервал виміряється методом рахунка імпульсів частоти міжмодових биттів м . Оскільки тривалість строба залежить лише від величини відхилення ЛА від РСН, а не від сторони відхилення, маємо схему визначення полярності сигналу похибки («+» або «-»). Якщо ЛА буде розташований нижче РСН, то першим надійде імпульс від ФІ 2 з каналу 2м від , а другим - з каналу м від. Визначення знаку «+» або «-», або сторони відхилення ЛА від РСН (Фіг.1; 5 а, б) складається в наступному. Якщо ЛА знаходиться вище РСН, то імпульс 1 (Фіг.1,5 а) від каналу м від випереджає імпульс 2 каналу 2м від . Оскільки строб від тригера затримується на час, що перевищує тривалість імпульсу 1 (або 2), то схема збігів «І» не спрацьовує, тому що імпульс 1 не збігається в часі з даним стробом. Знак сигналу похибки по куту  залишається позитивним («+»). Якщо ЛА знаходиться нижче РСН (Фіг.5 б), то імпульс 1 відстає від імпульсу 2, тому він збігається в часі зі стробом. Схема «І» спрацьовує і змінює знак («-» або полярність) напруги сигналу похибки по куту  . Імпульс зі схеми «І» подається на знаковий розряд лічильника імпульсів з частотою 60339 8 м . Число імпульсів у лічильнику пропорційно куту відхилення  від РСН. Форматування сигналу похибки по куту  відбувається таким же чином, як для сигналу похибки по куту  . Виконавчі механізми ВМ  і ВМ  розвертають приймально-передавальну платформу таким чином, щоб ЛА знаходився на РСН каналу АСН, тобто на РСН сумарної ДС лазерного випромінювання (Фіг.2, 6). Відображення інформації, що приймається (передається) від ЛА та обробка (вимірювання) кутів азимута  і міста  відбувається в ЕЦОМ. Формування сумарної ДС лазерного випромінювання, створення РСН, інформаційного каналу для каналу, що пропонується, пов'язано із задоволенням жорстких вимог, що пред'являються до спектру випромінювання одномодового багаточастотного лазера-передавача, тобто високоточної синхронізації подовжніх мод і стабілізації частот міжмодових биттів. Кількість інформаційних каналів (N) залежить від кількості мод (несучих частот  n ), які мають необхідні вихідні характеристики для використання. Джерела інформації: 1. Патент на корисну модель, №23213, Україна, МПК G01S17/42, G01S17/66. Канал автоматичного супроводження літальних апаратів за напрямком для лазерної інформаційно-вимірювальної системи. / О.В.Коломійцев, Г.В.Альошин, В.В.Баранник та ін. - №u200700012; Заяв. 02.01.2007; опубл. 10.05.2007; Бюл. №6 - 8с. 2. Патент України на корисну модель, № 43069, Україна, МПК G01S17/42, G01S17/66. Канал автоматичного супроводження літальних апаратів за напрямком. / О.В.Коломійцев, Г.В.Альошин, В.В.Бєлімов та ін. - №u200903690; Заяв. 15.04.2009; Опубл. 27.07.2009; Бюл. №14. 10с. 3. Патент України на корисну модель, №55645, Україна, МПК G01S17/42, G01S17/66. Частотночасовий метод пошуку, розпізнавання та вимірювання параметрів руху літального апарата. /О.В.Коломійцев - №u201005225; Заяв. 29.04.2010; Опубл. 27.12.2010; Бюл. №24. - 14с. 9 Комп’ютерна верстка Н. Лиcенко 60339 Підписне 10 Тираж 24 прим. Міністерство освіти і науки України Державний департамент інтелектуальної власності, вул. Урицького, 45, м. Київ, МСП, 03680, Україна ДП “Український інститут промислової власності”, вул. Глазунова, 1, м. Київ – 42, 01601

Дивитися

Додаткова інформація

Назва патенту англійською

Channel of automated following of aircrafts in direction with bsmp and capability of formation and treatment of image of an a

Автори англійською

Kolomiitsev Oleksii Volodymyrovych, Alioshyn Hennadii Vasyliovych, Vasyliev Dmytro Hennadiiovych, Kozina Olha andriivna, Kopylov Oleksandr Oleksiiovych, Olkhovikov Stanislav Valeriiovych, Pashkov Dmytro Pavlovych, Prykhodko Volodymyr Ivanovych, Sachuk Ihor Ivanovych, Shostak Anatolii Vasyliovych

Назва патенту російською

Канал автоматического сопровождения летательных аппаратов по направлению с бспм и возможностью формирования и обработки изображения ла

Автори російською

Коломийцев Алексей Владимирович, Алешин Геннадий Васильевич, Васильев Дмитрий Геннадьевич, Козина Ольга Андреевна, Копылов Александр Алексеевич, Ольховиков Станислав Валериевич, Пашков Дмитрий Павлович, Приходько Владимир Иванович, Сачук Игорь Иванович, Шостак Анатолий Васильевич

МПК / Мітки

МПК: G01S 17/66, G01S 17/42

Мітки: канал, апаратів, супроводження, автоматичного, зображення, напрямком, літальних, обробки, формування, можливістю, бспм

Код посилання

<a href="https://ua.patents.su/5-60339-kanal-avtomatichnogo-suprovodzhennya-litalnikh-aparativ-za-napryamkom-z-bspm-ta-mozhlivistyu-formuvannya-i-obrobki-zobrazhennya-la.html" target="_blank" rel="follow" title="База патентів України">Канал автоматичного супроводження літальних апаратів за напрямком з бспм та можливістю формування і обробки зображення ла</a>

Подібні патенти