Завантажити PDF файл.

Формула / Реферат

Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів та можливістю формування і обробки зображення ЛА, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, блок дефлекторів, передавальну оптику, приймаючу оптику, фотодетектор, широкосмуговий підсилювач (ШП), резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери ("1"|"0"), схеми "і", лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконуючі механізми, електронно-цифрову обчислювальну машину та а - введення опорного сигналу з частотою Dvм передавального лазера, б - введення сигналу від каналу оцінки тангенціальної складової швидкості (кутових швидкостей) літального апарата (ЛА) для уточнення похибки збігу по кутах, який відрізняється тим, що після ШП додатково замість інформаційного блока введено модифікований інформаційний блок для інформаційного взаємозв'язку з ЛА та формування і обробки його зображення.

Текст

Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів та можливістю формування і обробки зображення ЛА, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастот U 2 (19) 1 3 ням каналів (СПМБРК), блок дефлекторів, передавальну оптику, приймаючу оптику, фотодетектор, широкосмуговий підсилювач, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери ("1"|"0"), схеми "і", лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконуючі механізми, електронно-цифрову обчислювальну машину та а - введення опорного сигналу з частотою м передавального лазера, б - введення сигналу від каналу оцінки тангенціальної складової швидкості (кутових швидкостей) ЛА для уточнення похибки збігу по кутах, інформаційний блок для інформаційного взаємозв'язку з ЛА. Недоліком каналу-прототипу є те, що він не може формувати та обробляти зображення ЛА. В основу корисної моделі поставлена задача створити канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів та можливістю формування і обробки зображення ЛА, який дозволить здійснювати багатоканальний (N) інформаційний взаємозв'язок з ЛА на частотах міжмодових биттів 9 м ... N мn, точне і стійке кутове автосупроводження при одночасному вимірюванні кутів азимута і міста у широкому діапазоні дальностей, починаючи з початкового моменту його польоту та, в разі необхідності, формування і обробку зображення ЛА. Поставлена задача вирішується за рахунок того, що у відомий канал-прототип [2], який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, блок дефлекторів, передавальну оптику, приймаючу оптику, фотодетектор, широкосмуговий підсилювач, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери ("1"|"0"), схеми "і", лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконуючі механізми, електронно-цифрову обчислювальну машину та а - введення опорного сигналу з частотою м передавального лазера, б - введення сигналу від каналу оцінки тангенціальної складової швидкості (кутових швидкостей) ЛА для уточнення похибки збігу по кутах, інформаційний блок для інформаційного взаємозв'язку з ЛА, додатково після ШП замість ІБ введено модифікований інформаційний блок (МІБ) для інформаційного взаємозв'язку з ЛА та формування і обробки його зображення. Побудова каналу автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів та можливістю формування і обробки зображення ЛА пов'язана з використанням МЧЧМВ [3] та синхронізованого одномодового багаточастотного випромінювання єдиного лазера-передавача. Технічний результат, який може бути отриманий при здійсненні корисної моделі полягає в стійкому кутовому автосупроводженні ЛА при одночасному високоточному вимірюванні кутів азимута і міста у широкому діапазоні дальностей, починаю 55500 4 чи з початкового моменту його польоту, багатоканальному (N) інформаційному взаємозв'язку з ЛА на частотах міжмодових биттів та, в разі необхідності, формуванні і обробки його зображення. На Фіг.1 приведена узагальнена структурна схема запропонованого каналу АСН, де: 1 - вимірювальний сигнал; 2 - інформаційний сигнал; а введення опорного сигналу з частотою м (3 м) лазера-передавача; б - введення сигналу від каналу оцінки тангенціальної складової швидкості (кутових швидкостей ' і ') ЛА для уточнення похибки збігу по кутах каналів. На Фіг.2 приведено створення рівносигнального напрямку (РСН) та сканування 4-ма діаграмами спрямованості (ДС) лазерного випромінювання в ортогональних площинах. На Фіг.3 приведено створення лазерного сигналу із просторовою модуляцією поляризації. На Фіг.4 приведені епюри напруг з виходів блоків каналу АСН. На Фіг.5 приведені епюри напруг з виходів блоків каналу АСН, які визначають полярність, де: а) - для визначення знаку "+"; б) - для визначення знаку "-". На Фіг.6 приведено кут відхилення ЛА від РСН відносно ЛІВС. Запропонований канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів та можливістю формування і обробки зображення ЛА містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, блок дефлекторів, передавальну оптику, приймаючу оптику, фотодетектор, широкосмуговий підсилювач, модифікований інформаційний блок для інформаційного взаємозв'язку з ЛА та формування і обробки його зображення, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери ("1"|"0"), схеми "і", лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконуючі механізми, електронно-цифрову обчислювальну машину та а - введення опорного сигналу з частотою м передавального лазера, б – введення сигналу від каналу оцінки тангенціальної складової швидкості (кутових швидкостей) ЛА для уточнення похибки збігу по кутах. Робота запропонованого каналу автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів та можливістю формування і обробки зображення ЛА полягає в наступному. Із синхронізованого одномодового багаточастотного спектра випромінювання YAG:Nd3+ - лазера (або лазера з найбільш кращими показниками) (Лн) за допомогою СПМБРК виділяються необхідні пари частот для створення: - багатоканального (N) інформаційного зв'язку, за умовою використання сигналів комбінацій подовжніх мод (на різницевій частоті міжмодових биттів A 101= 10- 1=9 м, ... N мn); - рівносигнального напрямку на основі формування сумарної ДС лазерного випромінювання, 5 завдяки частковому перетину 4-х парціальних ДС, за умовою використання різницевих частот міжмодових биттів 54= 5- 4= м, 97= 9- 7=2 м, 63= 63=3 м, 82= 8- 2=6 м; - лазерного сигналу із просторовою модуляцією поляризації, за умови використання сигналу з двох подовжніх мод (несучих частот n1, n2). Лазерний сигнал, який складений із частот міжмодових биттів N мn, минаючи БД, потрапляє на ПРДО, де змішується (модулюється) з інформаційним сигналом від МІБ та формує багатоканальний (N) інформаційний сигнал, що передається ЛА (створення взаємозв'язку) (Фіг.1, 2). За допомогою СПМБРК та МІБ створюються два лазерні сигнали із просторовою модуляцією поляризації шляхом розведення лазерного випромінювання (кожної несучої частоти n1 та n2) на два променя з поворотом площини поляризації на кут 90° в одному з них ( n1a, n1б, та n2a, n2б Фіг.2, 3). При цьому випромінювання апертури першого і другого каналів в апертурній площині u0v рознесені на відстані . Різниця ходу пучків до картинної площини ЛА ХОУ змінюється вдовж осі X від точки до точки. Обумовлена цим різниця фаз між поляризованими компонентами, що ортогональні поля у картинної площини також змінюються від точки до точки. В залежності від різниці фаз у картинній площині змінюється вигляд поляризації сумарного поля сигналу, що зондує від лінійної через еліптичну і циркулюючу до лінійної, ортогональної до початкової і т.д. Період зміни вигляду поляризації визначається базою між випромінювачами та відстанню до картинної площини R. Розподіл інтенсивності в реєстрованому зображенні ЛА промодульовано по гармонійному закону з коефіцієнтом модуляції, дорівнює значенню ступеня поляризації випромінювання, що відбито, в даній ділянці поверхні ЛА. Водночас імпульсний лазерний сигнал (вимірювальний) частот міжмодових биттів м, 2 м, 3 м та 6 м надходить на БД, що складається з 4х п'єзоелектричних дефлекторів. Парціальні ДС лазерного випромінювання попарно зустрічно сканують БД у кожній із двох ортогональних площин (Фіг.1, 2). Період сканування задається БКД, який разом з Лн живляться від керуючого елемента. Проходячи через ПРДО, груповий лазерний імпульсний сигнал пар частот: 5, 4= м, 9, 7=2 м, 6, 3=3 м та 8, 2=6 м фокусується в скановані точки простору, оскільки здійснюється зустрічне сканування двома парами ДС лазерного випромінювання у кожній із двох ортогональних площин і або X і У, при цьому груповий (інформаційний) лазерний сигнал частот 9 м ... N мn та лазерні сигнали із просторовою модуляцією поляризації ( n1a, n1б, та n2a, n2б) - проходять вдовж РСН (Фіг. 2). При відбитті лазерного сигналу із просторовою модуляцією поляризації, що зондує, від поверхні ЛА змінюються амплітудні і фазові співвідношення між ортогонально поляризаційними компонентами, параметри їх поляризаційні і, відповідно комплексні коефіцієнти когерентності відбитого поля. Прос 55500 6 торовий розподіл поляризаційних характеристик такого відбитого сигналу по зміні контрасту модуляційної структури зображення несе також інформацію про типи матеріалів у складі поверхні ЛА, їх характеристики і тощо, тому у модифікованому інформаційному блоці здійснюється поляризаційна обробка поля, що приймається. Прийняті приймальною оптикою від ЛА, відбиті в процесі сканування чотирьох ДС лазерного випромінювання, лазерні імпульсні сигнали і огинаючи сигнали ДС за допомогою ФТД перетворюються в електричні імпульсні сигнали на різницевих частотах міжмодових биттів. Підсилені ШП, вони розподіляються в МІБ для обробки інформації (9 м від ... N мn), яка приймається від ЛА і відбитих лазерних сигналів із просторовою модуляцією поляризації, що зондує, від поверхні ЛА та по РП, що настроєні на відповідні частоти: м від, 2 м від, 3 м від, 6 м від. Імпульсні сигнали радіочастоти, що надходять з PП м і РП2 м - формують сигнал похибки по куту , а РП3 м і РП6 м - по ку ту . Формування сигналу похибки по куту , полягає в наступному. Введення з опорного каналу імпульсного сигналу м (а), перетвореного ФІ1 у "пачки" опорних імпульсів на частоті м оп, надходить на схему "І". Виділений і посилений імпульсний сигнал з РП м частоти міжмодових биттів м від (Фіг.3, 4), детектується у виді огиначів сигналу, що змінюється за законом руху ДС лазерного випромінювання і, після проходження Ф, перетворюється у ФІ2 у точках переходів періодів сканування в імпульси (один імпульс за період сканування) та надходить на тригер "1", перекидаючи його. У цей же час, виділений і посилений PП2 м імпульсний сигнал частоти міжмодових биттів 2 м від детектується, виділяючи огинаючу сигналу, що змінюється по такому ж закону. Проходячи Ф, перетворюється в ФІ2 у точках переходів періодів коливань в імпульси (один імпульс за період сканування) та надходить на тригер "0", установлюючи його у вихідний стан. Вимір часового інтервалу в схемі "І" із заданою точністю, полягає у встановленні критерію початку і кінця відліку часового інтервалу по визначених характеристиках значення імпульсних сигналів, що надходять на входи схеми "І". У зв'язку з тим, що передній фронт імпульсу досить малий у порівнянні з дозволом, що вимагається за часом, характерними значеннями сигналу, які визначають начало і кінець відліку часового інтервалу, є граничне значення Uп (порогове значення напруги) (Фіг.4). Завдяки періодичному за цикл сканування відкриттю і закриттю тригером схеми "І", регулюється проходження імпульсів у схемі "І" від ФІ1, тобто відбувається виділення "пачок" імпульсів, число яких пропорційно куту відхилення ЛА від РСН (Фіг.5, 6). Підраховані лічильником імпульси перетворюються ЦАП в аналоговий сигнал похибки з необхідним знаком, що змішується у ФНЧ з імпульсним сигналом від каналу кутових швидкостей ЛА (б) для уточнення похибки збігу по кутах. Завдяки обліку вимірювальної інформації від каналу кутових швидкостей (б) у ФНЧ усуваються динамічна і флукту 7 аційна похибки фільтрації. Відфільтрований у ФНЧ і посилений підсилювачем сигналу похибки, отриманий сигнал відпрацьовується за допомогою ВМ ( ), надходить від ПСП на вхід ЕЦОМ та виділяється в ній у виді числа, пропорційного вимірюваному куту азимута . Якщо ЛА знаходиться вище РСН, то на схему "І" першим надходить імпульс з ФІ2 міжмодової частоти м від, а на тригер надходить другим імпульс з ФІ2 міжмодової частоти 2 м від (Фіг.1, 4, 5). На схему "І" від тригера подається строб, тривалість якого пропорційна відхиленню ЛА від РСН. Цей часовий інтервал вимірюється методом рахунка імпульсів частоти міжмодових биттів м від. Оскільки тривалість строба залежить лише від величини відхилення ЛА від РСН, а не від сторони відхилення, необхідно мати схему визначення полярності сигналу похибки ("+" або "-"). Якщо ЛА буде розташований нижче РСН, то першим надійде імпульс від ФІ2 з каналу 2 м від, а другим - з м від. Визначення знаку ("+" або "-"), або сторони відхилення ЛА від РСН (Фіг.1; 5 а, б) полягає в наступному. Якщо ЛА знаходиться вище РСН, то імпульс 1 (Фіг.1, 5 а) від каналу м від випереджає імпульс 2 каналу 2 м від. Оскільки строб від тригера затримується на час, що перевищує тривалість імпульсу 1 (або 2), то схема збігів "І" не спрацьовує, тому що імпульс 1 не збігається в часі з даним стробом. Знак сигналу похибки по куту залишається позитивним. Якщо ЛА знаходиться нижче РСН (Фіг.5 б), то імпульс 1 відстає від імпульсу 2, тому він збігається в часі зі стробом. Схема "І" спрацьовує і змінює знак (або полярність) напруги сигналу похибки по куту . Імпульс зі схеми "І" подається на знаковий розряд лічильника імпульсів з частотою м. Число імпульсів у лічильнику пропо 55500 8 рційно куту відхилення від РСН. Форматування сигналу похибки по куту , відбувається таким же чином, як для сигналу похибки по куту . ВМ і BM розвертають приймальнопередавальну платформу таким чином, щоб ЛА знаходився на РСН каналу АСН, тобто на РСН сумарної ДС лазерного випромінювання (Фіг.2, 6). Відображення інформації, що приймається (передається) від ЛА та обробка (вимірювання) кутів азимута і міста відбувається в ЕЦОМ. Кількість інформаційних каналів (N) залежить від кількості комбінацій парних мод (несучих частот n), які мають необхідні вихідні характеристики для використання. Джерела інформації: 1. Патент на корисну модель, № 23213, Україна, MПК G01 S 17/42, G01 S 17/66. Канал автоматичного супроводження літальних апаратів за напрямком для лазерної інформаційновимірювальної системи. / О.В. Коломійцев, Г.В. Альошин, В.В. Баранник та ін. - № u200700012; Заяв. 02.01.2007; опубл. 10.05.2007; Бюл. № 6 - 8с. 2. Патент на корисну модель, № 48400, Україна, МПК G01S17/42, G01S17/66. Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів. / О.В. Коломійцев, В.В. Бєлімов, М.Б. Бровко та ін. № u200911398; Заяв. 09.11.2009; опубл. 10.03.2010; Бюл. №5 - 10с. 3. Деклараційний патент України на винахід № 65099А, Україна, МПК G01S17/42, G01S17/66. Модернізований частотно-часовий метод вимірювання параметрів руху літальних апаратів. / О.В. Коломійцев - №2003054908; Заяв. 15.03.2004; Опубл. 15.03.2004; Бюл. №3 - 4с. 9 55500 10 11 55500 12 13 Комп’ютерна верстка Л. Ціхановська 55500 Підписне 14 Тираж 26 прим. Міністерство освіти і науки України Державний департамент інтелектуальної власності, вул. Урицького, 45, м. Київ, МСП, 03680, Україна ДП “Український інститут промислової власності”, вул. Глазунова, 1, м. Київ – 42, 01601

Дивитися

Додаткова інформація

Назва патенту англійською

Channel for automated tracking of aircrafts by direction with use of frequencies of inter-mode beats and possibility of formation and processing image of an a

Автори англійською

Kolomiitsev Oleksii Volodymyrovych, Alioshyn Hennadii Vasyliovych, Bielimov Volodymyr Vasyliovych, Vasyliev Dmytro Hennadiiovych, Zlotnikov Andrii Lvovych, Kupchenko Leonid Fedorovych, Mozhaiev Oleksandr Oleksandrovych, Prykhodko Volodymyr Ivanovych, Prykhodko Dmytro Petrovych, Sachuk Ihor Ivanovych

Назва патенту російською

Канал автоматического сопровождения летательных аппаратов по направлению с использованием частот межмодовых биений и возможностью формирования и обработки изображения ла

Автори російською

Коломийцев Алексей Владимирович, Алешин Геннадий Васильевич, Белимов Владимир Васильевич, Васильев Дмитрий Геннадьевич, Злотников Андрей Львович, Купченко Леонид Федорович, Можаев Александр Александрович, Приходько Владимир Иванович, Приходько Дмитрий Петрович, Сачук Игорь Иванович

МПК / Мітки

МПК: G01S 17/42, G01S 17/66

Мітки: обробки, міжмодових, літальних, апаратів, биттів, формування, канал, супроводження, частот, можливістю, автоматичного, використанням, зображення, напрямком

Код посилання

<a href="https://ua.patents.su/7-55500-kanal-avtomatichnogo-suprovodzhennya-litalnikh-aparativ-za-napryamkom-z-vikoristannyam-chastot-mizhmodovikh-bittiv-ta-mozhlivistyu-formuvannya-i-obrobki-zobrazhennya-la.html" target="_blank" rel="follow" title="База патентів України">Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів та можливістю формування і обробки зображення ла</a>

Подібні патенти