Канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями для полігонного випробувального комплексу
Номер патенту: 83539
Опубліковано: 10.09.2013
Автори: Толстолузька Олена Геннадіївна, Коваль Володимир Валерійович, Руденко Дмитро Васильович, Євсєєв Сергій Петрович, Рябоконь Євген Олександрович, Коломійцев Олексій Володимирович, Орлов Сергій Володимирович, Клівець Сергій Іванович, Сачук Ігор Іванович, Гриб Ростислав Миронович
Формула / Реферат
Канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями для полігонного випробувального комплексу, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою (Лн), селектор подовжніх мод з багаточастотним розділенням каналів (СПМ БРК), блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) літального апарата (ЛА), що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему I, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор (ДШ), фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки та
- введення опорної частоти (
) від передавального лазера (Лн+СПМ БРК), який відрізняється тим, що після ДШ замість електронно-цифрової обчислювальної машини і блока відображення інформації про радіальну швидкість R' ЛА введено електронну обчислювальну машину.
Текст
Реферат: Канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями для полігонного випробувального комплексу, містить керуючий елемент, блок керування дефлекторами, лазер з накачкою (Лн), селектор подовжніх мод з багаточастотним розділенням каналів (СПМ БРК), блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) літального апарата (ЛА), що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему I, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор (ДШ), фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки п та 6м - введення опорної частоти ( 6м оп ) від передавального лазера (Лн+СПМ БРК). Після ДШ замість електронно-цифрової обчислювальної машини і блока відображення інформації про радіальну швидкість R' ЛА введено електронну обчислювальну машину. UA 83539 U (12) UA 83539 U UA 83539 U 5 10 15 Запропонована корисна модель належить до галузі електрозв'язку і може бути використана для синтезу шестипараметричної лазерної інформаційно-вимірювальної системи (ЛІВС) з частотно-часовим методом (ЧЧМ) пошуку, розпізнавання та вимірювання параметрів руху літального апарата (ЛА). Відомий "Канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та можливістю розпізнавання ЛА" [1], який містить керуючий елемент (КЕ), блок керування дефлекторами (БКД), лазер з накачкою (Лн), селектор подовжніх мод з багаточастотним розділенням каналів (СПМ БРК), блок дефлекторів (БД), передавальну оптику (ПРДО), приймальну оптику (ПРМО), фотодетектор (ФТД), широкосмуговий підсилювач (ШП), багатофункціональний інформаційний блок (БІБ) з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі (РП), настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів (ФІ), схему „і" ("І"), лічильник (Лч), змішувачі (ЗМ), фільтр (Ф), формувач мірних імпульсів (ФМІ), дешифратор (ДШ), фазову автопідстройку частоти (ФАПЧ) на частоті міжмодових биттів, керуючий генератор (КГ), опорний генератор (ОГ) з частотою підставки п , електронно-цифрову обчислювальну машину (ЕЦОМ), блок відображення інформації (БВІ) про радіальну швидкість R' ЛА та 6м - введення опорної частоти ( 6м оп ) від передавального лазера (Лн + СПМ БРК). 20 25 30 Недоліком відомого каналу є те, що він не використовує лазерний сигнал з просторовою модуляцією поляризації на несучих частотах п1 та п2 для детального розпізнавання ЛА. Найбільш близьким до запропонованого технічним рішенням, вибраним як прототип є "Канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями" [2], який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями (ІБРМ) з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему І, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор, фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки п , електронно-цифрову обчислювальну машину, блок відображення інформації про радіальну швидкість R' ЛА та 6м - введення опорної частоти ( 6м оп ) від передавального лазера (Лн+СПМ БРК). 35 40 45 50 55 Недоліком каналу-прототипу є те, що він не забезпечує збереження інформації, яка оброблена під час проведення випробувань ЛА. В основу корисної моделі поставлена задача створити канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями для полігонного випробувального комплексу, який дозволить здійснювати високоточне вимірювання радіальної швидкості ЛА у широкому діапазоні дальностей, багатоканальний (N) інформаційний взаємозв'язок з ним на частотах міжмодових биттів 9м … Nмn , збереження інформації, яка оброблена під час проведення випробувань ЛА та, завдяки використанню поляризаційних ознак ЛА, що отримуються, детально розпізнавати його за короткий час. Поставлена задача вирішується за рахунок того, що у канал-прототип, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему І, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор, фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки п , електронно-цифрову обчислювальну машину, блок відображення інформації про радіальну швидкість R' ЛА та 6м - введення опорної частоти ( 6м оп ) від передавального лазера (Лн + СПМ БРК), після ДШ замість ЕЦОМ і БВІ введено електронну обчислювальну машину (ЕОМ). Побудова каналу вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями для полігонного випробувального 1 UA 83539 U 5 10 15 20 25 30 35 40 45 50 55 комплексу пов'язана з використанням одномодового богаточастотного з синхронізацією подовжніх мод випромінювання єдиного лазера-передавача та ЧЧМ [3]. Технічний результат, який може бути отриманий при здійсненні корисної моделі полягає у високоточному вимірюванні радіальної швидкості R' ЛА у широкому діапазоні дальностей, починаючи з початкового моменту його польоту, багатоканальному (N) інформаційному взаємозв'язку з ним на частотах міжмодових биттів, збереженні інформації, яка оброблена під час проведення випробувань ЛА та розширенні набору поляризаційних ознак розпізнавання ЛА, що отримуються, підвищенні ефективності і скороченні часу на його розпізнавання. На Фіг. 1 приведено передавальний бік узагальненої структурної схеми запропонованого каналу, де: 1 - вимірювальний сигнал; 2 - інформаційний сигнал та сигнал з просторовою модуляцією поляризації; б - введення сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна. На Фіг. 2 приведена узагальнена структурна схема запропонованого каналу, де: І структурна схема реалізації стежучого принципу вимірювання; II - структурна схема вимірювання радіальної швидкості ЛА. На Фіг. 3 приведено створення рівносигнального напрямку (РСН) та сканування 4-ма діаграмами спрямованості (ДС) лазерного випромінювання в ортогональних площинах. На Фіг. 4 приведено створення лазерного сигналу з просторовою модуляцією поляризації. Запропонований канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями для полігонного випробувального комплексу містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему І, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор, фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки п , електронну обчислювальну машину та 6м - введення опорної частоти ( 6м оп ) від передавального лазера (Лн+СПМБРК). Робота запропонованого каналу вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями для полігонного випробувального комплексу полягає у наступному. Зі спектра випромінювання одномодового багаточастотного з синхронізацією подовжніх мод лазера-передавача (Лн) за допомогою СПМ БРК виділяються необхідні пари частот для створення: багатоканального (N) інформаційного зв'язку, за умови використання сигналів комбінацій подовжніх мод (на різницевій частоті міжмодових биттів 101 10 1 9м,...Nмn ); лазерного сигналу з просторовою модуляцією поляризації, за умови використання сигналу з двох подовжніх мод (несучих частот п1 , п2 ); РСН на основі формування сумарної ДС лазерного випромінювання, завдяки 4-х парціальних діаграм спрямованості, що частково перетинаються, за умови використання комбінацій подовжніх мод ("підфарбованих" різницевими частотами міжмодових биттів) 54 5 4 м , 97 9 7 2м , 63 6 3 3м , 82 8 2 6м . Лазерний сигнал, який складений з частот міжмодових биттів Nмn , минаючи БД, потрапляє на ПРДО, де змішується (модулюється) з інформаційним сигналом від ІБРМ та формує багатоканальний (N) інформаційний сигнал, що передається ЛА (створення взаємозв'язку) (Фіг. 1-3). Також, за допомогою СПМ БРК та ІБРМ створюється лазерний сигнал з просторовою модуляцією поляризації шляхом створення лазерного випромінювання з двох несучих частот ( п1 i п2 ) у вигляді двох променів з вертикальною ( п1 ) та горизонтальною ( п2 ) поляризацією (Фіг. 4). При цьому випромінювання апертури першого і другого поляризаційних каналів в апертурної плоскості V0U рознесені на відомій відстані q . Різність ходу пучків до картинної плоскості ЛА ХОУ змінюється вдовж осі X від точки до точки. Обумовлена цим різниця фаз (амплітуд) між поляризованими компонентами, що ортогональні, поля у картинній плоскості також змінюється від точки до точки. В залежності від різниці фаз (амплітуд) у картинній плоскості змінюється вигляд поляризації сумарного поля сигналу, що зондує від лінійної через еліптичну і циркулюючу до лінійної, ортогональної к начальної і т.д. Період зміни вигляду 2 UA 83539 U 5 10 15 20 поляризації визначається базою між випромінювачами q та відстанню до картинної плоскості R. Розподіл інтенсивності в реєстрованому зображенні ЛА промодульовано по гармонійному закону з коефіцієнтом модуляції, дорівнює значенню ступеня поляризації випромінювання, що відбито в даній ділянці поверхні ЛА. Водночас імпульсний лазерний сигнал (вимірювальний) частот міжмодових биттів м , 2м , 3м та 6м надходить на БД, що складається з 4-х п'єзоелектричних дефлекторів. Парціальні ДС лазерного випромінювання попарно зустрічно сканують БД у кожній з двох ортогональних площин (Фіг. 3). Період сканування задається БКД, який разом з Лн живляться від КЕ. Проходячи через ПРДО, груповий лазерний імпульсний сигнал пар частот 5, 4 м , 9 , 7 2м , 6 , 3 3м та 8 , 2 6м фокусується в скановані точки простору, оскільки здійснюється зустрічне сканування двома парами ДС лазерного випромінювання у кожній з двох ортогональних площин і або X і У. При цьому груповий (інформаційний) лазерний сигнал частот 9м...Nмn та лазерний сигнал з просторовою модуляцією поляризації на несучих частотах ( п1 і п2 ) проходять вдовж РСН (Фіг. 3). Прийняті ПРМО від ЛА, відбиті в процесі сканування 4-ох ДС лазерного випромінювання, лазерні імпульсні сигнали і огинаючі сигнали ДС за допомогою ФТД перетворюються в електричні імпульсні сигнали на різницевих частотах міжмодових биттів. Підсилені ПІП вони розподіляються: в ІБРМ для обробки інформації, що приймається від ЛА та відбитого лазерного сигналу з просторовою модуляцією поляризації, що зондує, від його поверхні; по РП, що настроєні на відповідні частоти міжмодових биттів м в ід , 2м в ід , 3м в ід , 6м в ід . 25 30 35 Імпульсні сигнали радіочастоти, що надходять з РП 4 (РП 6м ) формують сигнал для визначення R' ЛА, а РП 1 (РП м ), РП 2 (РП 2м ) і РП З (РП 3м ) - формують сигнали для інших вимірювальних каналів ЛІВС. При відбитті лазерного сигналу з просторовою модуляцією поляризації, що зондує, від поверхні ЛА, змінюються амплітудні і фазові співвідношення між ортогонально поляризаційними компонентами, параметри їх поляризаційні і, відповідно, комплексні коефіцієнти когерентності відбитого поля. Просторовий розподіл поляризаційних характеристик такого відбитого сигналу по зміні контрасту модуляційної структури зображення несе також інформацію про типи матеріалів у складі поверхні ЛА, їх характеристики і тощо, що відображається у ЕОМ. Тому у ІБРМ також здійснюється поляризаційна обробка поля, що приймається. Принцип вимірювання радіальної швидкості ЛА для ЛІВС полягає у наступному (Фіг. 1, 2). На перший змішувач (ЗМ1) від РП 4 (РП 6м ) подається сигнал з частотою 6м в ід , який змішується через зворотний зв'язок з сумішшю частот 6м в ід м п , від КГ та фільтрується. У ФАПЧ на частоті міжмодових биттів цей сигнал змішується з частотою п від ОГ. Отриманий сигнал з частотою Г , з виходу А керуючого генератора подається на вхід другого змішувача 40 45 50 (ЗМ2), де змішується з опорною частотою6м . Сигнал різницевої частоти 6м в ід (м м п ) , отриманий з виходу Ф2, через ФІ, надходить на схему І. На лічильник проходить пачка імпульсів, обумовлена мірним інтервалом від ФМІ. Виділена дешифратором кількість рахункових імпульсів пропорційна частоті перетворюється у ЕОМ в цифро-аналоговий сигнал, що у цифровому вигляді м допл відображає радіальну швидкість ЛА на цифровому табло. Для збереження інформації, яка оброблена під час проведення випробувань ЛА, в пам'яті ЕОМ використовується база даних - сукупність взаємопов'язаних даних, організованих у відповідності до схеми даних таким чином, щоб з ними міг працювати користувач. Підвищення швидкості обробки інформації, яка надходить на ЕОМ здійснюється за рахунок використання методів та моделей паралельної обробки даних. Вимірювальна інформація про тангенціальну складову швидкості (кутові швидкості) ЛА від каналу кутових швидкостей використовується в ІБРМ, де завдяки додатковій обробці елементів поляризаційної матриці розсіяння ЛА від отриманого поляризаційного поля (суми сигналів різної поляризації) забезпечується точне 3 UA 83539 U 5 10 15 значення кутових швидкостей ЛА, розширюється набір ознак його розпізнавання, підвищується ефективність та скорочується час на розпізнавання ЛА, що супроводжується. Кількість інформаційних каналів (N) залежить від кількості мод ( п ), які мають необхідні вихідні характеристики для використання. Джерела інформації: 1. Патент на корисну модель, № 55503, Україна, МПК G01 S 17/42, G01 S 17/66. Канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та можливістю розпізнавання ЛА./ О.В. Коломійцев, Г.В. Альошин, Д.Г. Васильєв та ін. № u201008910; Заяв. 16.07.2010; Опубл. 10.12.2010; Бюл. № 23.-10 с. 2. Патент на корисну модель № 60330, Україна, MПK G01 S 17/42, G01 S 17/66. Канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями./ О.В. Коломійцев, Д.Г.Васильєв, О.А. Козіна та ін. № u201101725; заяв. 14.02.2011; опубл. 10.06.2011; Бюл. № 11.-10 с. 3. Патент на корисну модель № 55645, Україна, МПК G01 S 17/42, G01 S 17/66. Частотночасовий метод пошуку, розпізнавання та вимірювання параметрів руху літального апарату./ О.В. Коломійцев - № u201005225; заяв. 29.04.2010; опубл. 27.12.2010; Бюл. № 24.-14 с. ФОРМУЛА КОРИСНОЇ МОДЕЛІ 20 25 30 Канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями для полігонного випробувального комплексу, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою (Лн), селектор подовжніх мод з багаточастотним розділенням каналів (СПМ БРК), блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) літального апарата (ЛА), що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему I, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор (ДШ), фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки п та 6м - введення опорної частоти ( 6м оп ) від передавального лазера (Лн+СПМ БРК), який відрізняється тим, що після ДШ замість електронно-цифрової обчислювальної машини і блока відображення інформації про радіальну швидкість R' ЛА введено електронну обчислювальну машину. 4 UA 83539 U 5 UA 83539 U Комп’ютерна верстка А. Крижанівський Державна служба інтелектуальної власності України, вул. Урицького, 45, м. Київ, МСП, 03680, Україна ДП “Український інститут промислової власності”, вул. Глазунова, 1, м. Київ – 42, 01601 6
ДивитисяДодаткова інформація
Автори англійськоюKolomiitsev Oleksii Volodymyrovych, Sachuk Ihor Ivanovych, Klivets Serhii Ivanovych, Koval Volodymyr Valeriiovych, Orlov Sergii Volodymyrovych, Riabokon Yevhen Oleksandrovych
Автори російськоюКоломийцев Алексей Владимирович, Сачук Игорь Иванович, Кливец Сергей Иванович, Коваль Владимир Валериевич, Орлов Сергей Владимирович, Рябоконь Евгений Александрович
МПК / Мітки
МПК: G01S 17/66, G01S 17/42
Мітки: апаратів, комплексу, канал, можливостями, використанням, швидкості, розширеними, вимірювання, биттів, частот, випробувального, літальних, полігонного, радіальної, міжмодових
Код посилання
<a href="https://ua.patents.su/8-83539-kanal-vimiryuvannya-radialno-shvidkosti-litalnikh-aparativ-z-vikoristannyam-chastot-mizhmodovikh-bittiv-ta-rozshirenimi-mozhlivostyami-dlya-poligonnogo-viprobuvalnogo-kompleksu.html" target="_blank" rel="follow" title="База патентів України">Канал вимірювання радіальної швидкості літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями для полігонного випробувального комплексу</a>
Попередній патент: Канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів та розширеними можливостями для полігонного випробувального комплексу
Наступний патент: Ланка проміжна монтажна типу птм
Випадковий патент: Друкований виріб у вигляді водної розмальовки