Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і мбд та розширеними можливостями для комбінованої лазерної системи

Є ще 1 сторінка.

Дивитися все сторінки або завантажити PDF файл.

Формула / Реферат

Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і МБД та розширеними можливостями для комбінованої лазерної системи, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з введенням б, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери "1"|"0", схеми I, лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронну обчислювальну машину та а - введення опорного сигналу з частотою Δvм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) літального апарата, який відрізняється тим, що додатково введено оптико-електронний модуль, який складений з телевізійного і інфрачервоного каналів.

Текст

Реферат: Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і МБД та розширеними можливостями для комбінованої лазерної системи містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з введенням б, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери "1"|"0", схеми I, лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронну обчислювальну машину та а - введення опорного сигналу з частотою Δvм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) літального апарата. Додатково введено оптико-електронний модуль, який складений з телевізійного і інфрачервоного каналів. UA 100569 U (12) UA 100569 U UA 100569 U 5 10 15 20 25 30 35 40 45 50 55 Запропонована корисна модель належить до галузі електрозв'язку і може бути використана для побудови передавальної частки мобільної комбінованої лазерної системи (КЛС). Відомий "Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і МБД та розширеними можливостями" [1], який містить керуючий елемент (КЕ), блок керування дефлекторами (БКД), лазер з накачкою (Лн), селектор подовжніх мод з багаточастотним розділенням каналів (СПМ БРК), модифікований блок дефлекторів (МБД), передавальну оптику (ПРДО), приймальну оптику (ПРМО), фотодетектор (ФТД), широкосмуговий підсилювач (ШП), інформаційний блок з розширеними можливостями (ІБРМ) з введенням б, резонансні підсилювачі (РП), настроєні на відповідні частоти міжмодових биттів, детектори (Дет), фільтри (Ф), формувачі імпульсів (ФІ), тригери "1"|"0", схеми I, лінії затримки (ЛЗ), лічильники (Лч), цифро-аналогові перетворювачі (ЦАП), фільтри нижніх частот (ФНЧ), підсилювачі (фільтри) сигналу похибки (ПСП), виконавчі механізми (ВМ), електронно-цифрову обчислювальну машину (ЕЦОМ) та а - введення опорного сигналу з частотою Δvм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) літального апарата (ЛА). Недоліком відомого каналу є те, що він не забезпечує збереження інформації, яка оброблена під час проведення випробувань ЛА. Найбільш близьким до запропонованого технічним рішенням, вибрано як прототип є "Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і МБД та розширеними можливостями для полігонного випробувального комплексу" [2], який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з введенням б, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери "1"|"0", схеми I, лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронну обчислювальну машину (ЕОМ) та а - введення опорного сигналу з частотою Δvм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) ЛА. Недоліком каналу-прототипу є те, що він не здійснює об'єктивний контроль у денних і нічних умовах під час проведення випробувань ЛА. В основу корисної моделі поставлена задача створити канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і МБД та розширеними можливостями для комбінованої лазерної системи, який дозволить здійснювати багатоканальну (N) передачу команд керування на ЛА на частотах міжмодових биттів 9Δv м … NΔvмn, точне і стійке кутове автосупроводження при одночасному вимірюванні кутів азимута α і міста β у широкому діапазоні дальностей, починаючи з початкового моменту його польоту, об'єктивний контроль, розширення функціональних можливостей під час проведення випробувань ЛА у нічний час, збереження інформації, яка оброблена під час проведення випробувань ЛА та, в разі необхідності, його пошук у заданій зоні за заданим законом сканування діаграмами спрямованості (ДС) лазерного випромінювання і, завдяки використання поляризаційних ознак ЛА, що отримуються, детально розпізнавати його за короткий час. Поставлена задача вирішується за рахунок того, що у канал-прототип, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з введенням б, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери "1"|"0", схеми I, лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронну обчислювальну машину та а введення опорного сигналу з частотою Δvм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) ЛА, додатково введено оптикоелектронний модуль (OEM), який складений з телевізійного і інфрачервоного каналів. Побудова каналу автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів та розширеними можливостями для комбінованої лазерної системи пов'язана з використанням одномодового богаточастотного з синхронізацією подовжніх мод випромінювання єдиного лазера-передавача, частотно-часового методу (ЧЧМ) вимірювання [3] та OEM. 1 UA 100569 U 5 10 15 20 25 30 35 40 45 50 55 60 Технічний результат, який може бути отриманий при здійсненні корисної моделі полягає у стійкому кутовому автосупроводженні ЛА при одночасному високоточному вимірюванні кутів азимута і міста у широкому діапазоні дальностей, починаючи з початкового моменту його польоту, багатоканальної (N) передачі команд керування на ЛА на частотах міжмодових биттів, здійсненні об'єктивного контролю у денних і нічних умовах, збереженні інформації, яка оброблена під час проведення випробувань ЛА та його пошуку у заданій зоні і розширенні набору поляризаційних ознак розпізнавання ЛА, що отримуються, підвищенні ефективності і скороченні часу на його розпізнавання. На фіг. 1 приведена узагальнена структурна схема запропонованого каналу, де: І вимірювальний сигнал; II - інформаційний сигнал та сигнал з просторовою модуляцією поляризації; III - комбінований сигнал у видимому і інфрачервоному діапазонах; а - введення опорного сигналу з частотою Δvм (3Δvм) від лазера-передавача; б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей ' і ') ЛА. На фіг. 2 приведено створення рівносигнального напрямку (РСН) та сканування сумарною ДС лазерного випромінювання у невеликому куті і окремо 4-ма діаграмами спрямованості в ортогональних площинах. На фіг. 3 приведено створення лазерного сигналу з просторовою модуляцією поляризації. На фіг. 4 приведені епюри напруг з виходів блоків каналу АСН. На фіг. 5 приведені епюри напруг з виходів блоків каналу АСН, які визначають полярність, де: а) - для визначення знаку "+"; б) - для визначення знаку "-". На фіг. 6 приведено кут відхилення ЛА від РСН відносно КЛС. Запропонований канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і МБД та розширеними можливостями для комбінованої лазерної системи містить керуючий елемент 1, блок керування дефлекторами 2, лазер з накачкою 3, селектор подовжніх мод з багаточастотним розділенням каналів 4, модифікований блок дефлекторів 5, передавальну оптику 6, оптико-електронний модуль 7, який складений з телевізійного і інфрачервоного каналів, приймальну оптику 8, фотодетектор 9, широкосмуговий підсилювач 10, інформаційний блок з розширеними можливостями з введенням б 11, резонансні підсилювачі 12, настроєні на відповідні частоти міжмодових биттів, детектори 13, фільтри 14, формувачі імпульсів (ФІ1-15, ФІ2-16), тригери "1"|"0" 17, схеми I 18, лінії затримки 19, лічильники 20, цифро-аналогові перетворювачі 21, фільтри нижніх частот 22, підсилювачі (фільтри) сигналу похибки 23, виконавчі механізми 24, електронну обчислювальну машину 25 та а - введення опорного сигналу з частотою Δvм від передавального лазера, б введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) ЛА. Робота запропонованого каналу автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і МБД та розширеними можливостями для полігонного випробувального комплексу полягає у наступному. Зі спектру випромінювання одномодового багаточастотного з синхронізацією подовжніх мод лазера-передавача (Лн) за допомогою СПМ БРК виділяються необхідні пари частот для створення: - багатоканального (N) інформаційного зв'язку, за умови використання сигналів комбінацій подовжніх мод (на різницевій частоті міжмодових биттів Δv101=v10-v1=9Δvм, …NΔvмn); - лазерного сигналу з просторовою модуляцією поляризації, за умови використання сигналу з двох подовжніх мод (несучих частот vn1, vn2); - РСН на основі формування сумарної ДС лазерного випромінювання, завдяки 4-х парціальних діаграм спрямованості, що частково перетинаються, за умови використання комбінацій подовжніх мод ("підфарбованих" різницевими частотами міжмодових биттів). Δv54=v5-v4=Δvм, ΔV97=v9-v7=2Δvм, Δv63=v6-v3=3Δvм, ΔV82=v8-v2=6Δvм. Лазерний сигнал, який складений з частот міжмодових биттів NΔv мn, минаючи МБД, потрапляє на ПРДО, де змішується (модулюється) з інформаційним сигналом від ІБРМ та формує багатоканальний (N) інформаційний сигнал, що передається на ЛА (створення взаємозв'язку) (фіг. 1, 2). Також, за допомогою СПМ БРК та ІБРМ створюється лазерний сигнал з просторовою модуляцією поляризації шляхом створення лазерного випромінювання з двох несучих частот (vn1 та vn2) у вигляді двох променів з вертикальною (v n1) та горизонтальною (vn2) поляризацією (фіг. 3). При цьому випромінювання апертури першого і другого поляризаційних каналів в апертурної плоскості V0U рознесені на відомій відстані Δvq. Різність ходу пучків до картинної плоскості ЛА ХОУ змінюється вдовж осі X від точки до точки. Обумовлена цим різність фаз (амплітуд) між 2 UA 100569 U 5 10 15 20 25 30 35 40 45 50 55 поляризованими компонентами, що ортогональні, поля у картинної плоскості також змінюється від точки до точки. В залежності від різності фаз (амплітуд) у картинній плоскості змінюється вигляд поляризації сумарного поля сигналу, що зондує від лінійної через еліптичну і циркулюючу до лінійної, ортогональної к начальної і т.д. Період зміни вигляду поляризації визначається базою між випромінювачами Δv q та відстанню до картинної плоскості R. Розподіл інтенсивності в реєстрованому зображенні ЛА промодульовано по гармонійному закону з коефіцієнтом модуляції та дорівнює значенню ступеня поляризації випромінювання, що відбито в даній ділянці поверхні ЛА. Водночас імпульсний лазерний сигнал (вимірювальний) частот міжмо-дових биттів Δvм, 2Δvм, 3Δvм та 6Δvм надходить на МБД, що складається з 4-х п'єзоелектричних дефлекторів. Парціальні ДС лазерного випромінювання попарно зустрічно сканують МБД у кожній з двох ортогональних площин (фіг. 2). Період сканування задається БКД, який разом з Лн живляться від керуючого елемента. Проходячи через ПРДО, груповий лазерний імпульсний сигнал пар частот v 5,v4=Δvм, v9,v7=2Δvм, v6,v3=3Δvм та v8,v2=6Δvм фокусується в скановані точки простору, оскільки здійснюється зустрічне сканування двома парами ДС лазерного випромінювання у кожній з двох ортогональних площин  і  (X і У). При цьому груповий (інформаційний) лазерний сигнал частот 9Δv м … NΔvмn та лазерний сигнал з просторовою модуляцією поляризації на несучих частотах v n1, vn2 проходять вдовж РСН (фіг. 2). Прийняті ПРМО від ЛА інформаційні та лазерні імпульсні сигнали і огинаючи сигнали ДС лазерного випромінювання, відбиті в процесі сканування чотирьох ДС, за допомогою ФТД перетворюються в електричні імпульсні сигнали на несучих частотах і різницевих частотах міжмодових биттів. Підсилені ШП вони розподіляються: - в ІБРМ для обробки інформації, що приймається від ЛА та відбитого лазерного сигналу з просторовою модуляцією поляризації, що зондує, від його поверхні; - по РП, що настроєні на відповідні частоти міжмодових биттів Δvм від, 2Δvм від, 3Δvм від, 6Δvм . від При цьому, імпульсні сигнали радіочастоти, які надходять з РП Δvм і РП 2Δvм формують сигнал похибки по куту α, а РП 3Δvм і РП 6Δvм - по куту . При відбитті лазерного сигналу з просторовою модуляцією поляризації, що зондує, від поверхні ЛА, змінюються амплітудні і фазові співвідношення між ортогонально поляризаційними компонентами, параметри їх поляризаційні і, відповідно, комплексні коефіцієнти когерентності відбитого поля. Просторовий розподіл поляризаційних характеристик такого відбитого сигналу по зміні контрасту модуляційної структури зображення несе також інформацію про типи матеріалів у складі поверхні ЛА, їх характеристики і тощо, що відображається у ЕОМ. Тому у ІБРМ також здійснюється поляризаційна обробка поля, що приймається. Формування сигналу похибки по куту  полягає у наступному. Введення з опорного каналу імпульсного сигналу Δvм (а), перетвореного ФІ1 у "пачки" опорних імпульсів на частоті Δvм оп, надходить на схему І. Виділений і посилений імпульсний сигнал з РПΔvм частоти міжмодових биттів Δvм від детектується у виді огинаючей сигналу, що змінюється за законом руху ДС лазерного випромінювання і, після проходження Ф, перетворюється у ФІ2 у точках переходів періодів сканування в імпульси (один імпульс за період сканування) та надходить на тригер "1", перекидаючи його (фіг. 4, 5). У цей же час, виділений і посилений РП2Δvм імпульсний сигнал частоти міжмодових биттів 2Δvм від детектується, виділяючи огинаючу сигналу, що змінюється по такому ж закону. Проходячи Ф, перетворюється в ФІ2 у точках переходів періодів коливань в імпульси (один імпульс за період сканування) та надходить на тригер "0", установлюючи його у вихідний стан. Вимір часового інтервалу в схемі І з заданою точністю, полягає у встановленні критерію початку і кінця відліку часового інтервалу по визначених характеристиках значення імпульсних сигналів, що надходять на входи схеми І. У зв'язку з тим, що передній фронт імпульсу досить малий у порівнянні з дозволом, що вимагається за часом, характерними значеннями сигналу, які визначають начало і кінець відліку часового інтервалу, є граничне значення U п (порогове значення напруги) (фіг. 4). Завдяки періодичному за цикл сканування відкриттю і закриттю тригером схеми І, регулюється проходження імпульсів у схемі І від ФІ1, тобто відбувається виділення "пачок" імпульсів, число яких пропорційно куту відхилення ЛА від РСН (фіг. 5, 6). Підраховані лічильником імпульси перетворюються ЦАП в аналоговий сигнал похибки з необхідним знаком, 3 UA 100569 U 5 10 15 20 25 30 35 40 45 50 55 що змішується у ФНЧ з імпульсним сигналом від каналу кутових швидкостей ЛА (б) для уточнення похибки збігу по кутах. Завдяки обліку вимірювальної інформації від каналу кутових швидкостей (б) у ФНЧ усуваються динамічна і флуктуаційна похибки фільтрації. Отриманий сигнал, відфільтрований у ФНЧ і посилений підсилювачем сигналу похибки, відпрацьовується за допомогою ВМ (α), надходить від ПСПα на вхід ЕОМ та виділяється в ній у вигляді числа, пропорційного вимірюваному куту азимута . Якщо ЛА знаходиться вище РСН, то на схему І першим надходить імпульс з ФІ2 міжмодової частоти Δvм від, а на тригер надходить другим імпульс з ФІ2 міжмодової частоти 2Δv м від (фіг. 1, 4, 5). На схему І від тригера подається строб, тривалість якого пропорційна відхиленню ЛА від РСН. Цей часовий інтервал виміряється методом рахунку імпульсів частоти міжмодових биттів Δvм від. Оскільки тривалість строба залежить лише від величини відхилення ЛА від РСН, а не від сторони відхилення, маємо схему визначення полярності сигналу похибки ("+" або "-"). Якщо ЛА буде розташований нижче РСН, то першим надійде імпульс від ФІ2 з каналу 2 Δv м від, а другим - з Δvм від. Визначення знаку ("+" або "-"), або сторони відхилення ЛА від РСН полягає у наступному (фіг. 1; 5 а, б). Якщо ЛА знаходиться вище РСН, то імпульс 1 від каналу Δv м від випереджає імпульс 2 каналу 2Δvм від (фіг. 1,5 а). Оскільки строб від тригера затримується на час, що перевищує тривалість імпульсу 1 (або 2), то схема збігів І не спрацьовує, тому що імпульс 1 не збігається в часі з даним стробом. Знак сигналу похибки по куту  залишається позитивним. Якщо ЛА знаходиться нижче РСН, то імпульс 1 відстає від імпульсу 2, тому він збігається в часі зі стробом (фіг. 5 б). Схема І спрацьовує і змінює знак (або полярність) напруги сигналу похибки по куту . Імпульс зі схеми І подається на знаковий розряд лічильника імпульсів з частотою Δvм. Число імпульсів у лічильнику пропорційно куту відхилення  від РСН. Форматування сигналу похибки по куту  відбувається таким же чином, як для сигналу похибки по куту . ВМα і ВМβ розвертають приймально-передавальну платформу таким чином, щоб ЛА знаходився на РСН каналу АСН, тобто на РСН сумарної ДС лазерного випромінювання (фіг. 2, 6). Оптико-електронний модуль постійно здійснює у денних і нічних умовах у видимому та інфрачервоному діапазонах спостереження за ЛА, який супроводжується. Відображення інформації, що приймається (передається) від ЛА та обробка (вимірювання) кутів азимута  і міста  відбувається у ЕОМ. Для збереження інформації, яка оброблена під час проведення випробувань ЛА, в пам'яті ЕОМ використовується база даних - сукупність взаємопов'язаних даних, організованих у відповідності до схеми даних таким чином, щоб з ними міг працювати користувач. Підвищення швидкості обробки інформації, яка надходить на ЕОМ здійснюється за рахунок використання технології синтезу часу параметризованих паралельних програм. Вимірювальна інформація про тангенціальну швидкість (кутові швидкості) ЛА від каналу кутових швидкостей використовується в ІБРМ, де завдяки додаткової обробки елементів поляризаційної матриці розсіяння ЛА від отриманого поляризаційного поля (суми сигналів різної поляризації) забезпечується точне значення кутових швидкостей ЛА, розширюється набір ознак його розпізнавання, підвищується ефективність та скорочується час на розпізнавання ЛА, що супроводжується. В разі необхідності виявлення ЛА у заданої точці простору груповий сигнал, який складений з частот міжмодових биттів і несучих частот v n, сканується у вигляді сумарної ДС за допомогою МБД, де кут та напрямок відхилення сумарної ДС задається БКД (фіг. 1, 2). Кількість інформаційних каналів (N) залежить від кількості комбінацій парних мод (несучих частот vn). Джерела інформації: 1. Патент на корисну модель № 61880, Україна, МПК G01S17/42, G01S17/66. Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і МБД та розширеними можливостями. /О.В. Коломійцев, Г.В. Альошин, Д.Г. Васильєв та ін. - № u201104769; заяв. 18.04.2011; опубл. 25.07.2011; Бюл. № 14. - 14 с. 2. Патент на корисну модель № 88622, Україна, МПК G01S17/42, G01S17/66. Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і МБД та розширеними можливостями для полігонного випробувального комплексу. /О.В. Коломійцев, І.І. Сачук, Г.В. Альошин та ін. - № u201311807; заяв. 07.10.2013; опубл. 25.03.2014; Бюл. № 6. - 8 с. 4 UA 100569 U 3. Патент на корисну модель № 55645, Україна, МПК G01S17/42, G01S17/66. Частотночасовий метод пошуку, розпізнавання та вимірювання параметрів руху літального апарату. /О.В. Коломійцев - № u201005225; заяв. 29.04.2010; опубл. 27.12.2010; Бюл. № 24. - 14 с. 5 10 15 ФОРМУЛА КОРИСНОЇ МОДЕЛІ Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і МБД та розширеними можливостями для комбінованої лазерної системи, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, модифікований блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з введенням б, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, детектори, фільтри, формувачі імпульсів, тригери "1"|"0", схеми I, лінії затримки, лічильники, цифро-аналогові перетворювачі, фільтри нижніх частот, підсилювачі (фільтри) сигналу похибки, виконавчі механізми, електронну обчислювальну машину та а - введення опорного сигналу з частотою Δvм від передавального лазера, б - введення сигналу від каналу оцінки тангенціальної швидкості (кутових швидкостей) літального апарата, який відрізняється тим, що додатково введено оптико-електронний модуль, який складений з телевізійного і інфрачервоного каналів. 5 UA 100569 U 6 UA 100569 U Комп’ютерна верстка В. Мацело Державна служба інтелектуальної власності України, вул. Василя Липківського, 45, м. Київ, МСП, 03680, Україна ДП “Український інститут інтелектуальної власності”, вул. Глазунова, 1, м. Київ – 42, 01601 7

Дивитися

Додаткова інформація

МПК / Мітки

МПК: G01S 17/42, G01S 17/66

Мітки: супроводження, частот, системі, апаратів, можливостями, напрямком, лазерної, використанням, комбінованої, мбд, літальних, канал, биттів, міжмодових, автоматичного, розширеними

Код посилання

<a href="https://ua.patents.su/9-100569-kanal-avtomatichnogo-suprovodzhennya-litalnikh-aparativ-za-napryamkom-z-vikoristannyam-chastot-mizhmodovikh-bittiv-i-mbd-ta-rozshirenimi-mozhlivostyami-dlya-kombinovano-lazerno-sis.html" target="_blank" rel="follow" title="База патентів України">Канал автоматичного супроводження літальних апаратів за напрямком з використанням частот міжмодових биттів і мбд та розширеними можливостями для комбінованої лазерної системи</a>

Подібні патенти