Канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і мбд та розширеними можливостями для мобільної суміщеної вимірювальної системи

Є ще 1 сторінка.

Дивитися все сторінки або завантажити PDF файл.

Формула / Реферат

Канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для мобільної суміщеної вимірювальної системи, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, призми для частоти міжмодових биттів , модифікований блок дефлекторів, перемикач для частот міжмодових биттів  і , передавальну оптику, оптико-електронний модуль, який складений з телевізійного і інфрачервоного каналів, приймальну оптику, фотодетектори, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) літального апарату, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувач імпульсів, схему "і", фільтр із заданою смугою пропускання, диференційований ланцюжок, випрямляч, тригер, детектор, диференційовану оптику, підсилювач, фільтр, лічильник та електронну обчислювальну машину, який відрізняється тим, що додатково введено гіростабілізовану платформу.

Текст

Реферат: Канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для мобільної суміщеної вимірювальної системи, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, призми для частоти міжмодових биттів  м , модифікований блок дефлекторів, перемикач для частот міжмодових биттів  м і 2м , передавальну оптику, оптико-електронний модуль, який складений з телевізійного і інфрачервоного каналів, приймальну оптику, фотодетектори, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б введенням сигналу тангенціальної швидкості (кутових швидкостей) літального апарату, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувач імпульсів, схему "і", фільтр із заданою смугою пропускання, диференційований ланцюжок, випрямляч, тригер, детектор, диференційовану оптику, підсилювач, фільтр, лічильник та електронну обчислювальну машину, причому додатково введено гіростабілізовану платформу. UA 110339 U (12) UA 110339 U UA 110339 U 5 10 15 20 25 30 35 40 45 50 55 Запропонована корисна модель належить до галузі електрозв'язку і може бути використана для побудови передавальної частки мобільної суміщеної вимірювальної системи (МСВС). Відомий "Канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для полігонного випробувального комплексу" [1], який містить керуючий елемент (КЕ), блок керування дефлекторами (БКД), лазер з накачкою (Лн), селектор подовжніх мод з багаточастотним розділенням каналів (СПМ БРК), призми для частоти міжмодових биттів м , модифікований блок дефлекторів (МБД), перемикач для частот міжмодових биттів м і 2м , передавальну оптику (ПРДО), приймальну оптику (ПРМО), фотодетектори (ФТД), широкосмуговий підсилювач (ШП), інформаційний блок з розширеними можливостями (ІБРМ) з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) літального апарата (ЛА), що виміряна, резонансні підсилювачі (РП), настроєні на відповідні частоти міжмодових биттів, формувач імпульсів (ФІ), тригер "1"|"0", схему "і" ("І"), лічильники (Лч), фільтр з заданою смугою пропускання (Фп), детектор (Дет), диференційовану оптику (ДО), підсилювач (П), фільтр (Ф), диференційовані ланцюжки (ДЛ), випрямлячі (Вип) та електронну обчислювальну машину (ЕОМ). Недоліком відомого каналу є те, що він не здійснює об'єктивний контроль у денних і нічних умовах під час проведення випробувань ЛА. Найбільш близьким до запропонованого технічним рішенням, вибраним як прототип, є "Канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для комбінованої лазерної системи" [2], який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, призми для частоти міжмодових биттів м , модифікований блок дефлекторів, перемикач для частот міжмодових биттів м і 2м , передавальну оптику, оптико-електронний модуль (OEM), який складений з телевізійного і інфрачервоного каналів, приймальну оптику, фотодетектори, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувач імпульсів, схему "і", фільтр із заданою смугою пропускання, диференційований ланцюжок, випрямляч, тригер, детектор, диференційовану оптику, підсилювач, фільтр, лічильник та електронну обчислювальну машину. Недоліком каналу-прототипу є те, що він не забезпечує дотримання просторової стабілізації платформи, на якій розміщується суміщена приймально-передавальна апаратура та виконавчі механізми (ВМ) по кутах азимута  і місця  . В основу корисної моделі поставлена задача створити канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для мобільної суміщеної вимірювальної системи, який дозволить здійснювати високоточне вимірювання похилої дальності до ЛА у широкому діапазоні дальностей, багатоканальну (N) передачу команд керування на ЛА на частотах міжмодових биттів 9м...Nмn , об'єктивний контроль, розширення функціональних можливостей під час проведення випробувань ЛА у нічний час, збереження інформації, яка оброблена під час проведення випробувань ЛА, дотримання просторової стабілізації платформи, на якій розміщуються суміщена приймально-передавальна апаратура і ВМ по кутах азимута  і місця  та, в разі необхідності, пошук ЛА у заданій зоні за заданим законом сканування діаграмами спрямованості (ДС) лазерного випромінювання і, завдяки використанню поляризаційних ознак ЛА, що отримуються, детально розпізнавати його за короткий час. Поставлена задача вирішується за рахунок того, що у канал-прототип, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, призми для частоти міжмодових биттів м , модифікований блок дефлекторів, перемикач для частот міжмодових биттів м і 2м , передавальну оптику, оптико-електронний модуль, який складений з телевізійного і інфрачервоного каналів, приймальну оптику, фотодетектори, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б - введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувач імпульсів, схему "і", фільтр із заданою смугою пропускання, диференційований ланцюжок, випрямляч, тригер, детектор, диференційовану оптику, підсилювач, фільтр, лічильник та електронну обчислювальну машину, додатково введено гіростабілізовану платформу (ГСП). 1 UA 110339 U 5 10 15 20 25 30 35 40 45 50 55 Побудова каналу вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для мобільної суміщеної вимірювальної системи пов'язана з використанням одномодового богаточастотного з синхронізацією подовжніх мод випромінювання єдиного лазера-передавача, частотно-часового методу (ЧЧМ) вимірювання [3] та OEM. Технічний результат, який може бути отриманий при здійсненні корисної моделі, полягає у високоточному вимірюванні похилої дальності до ЛА у широкому діапазоні дальностей, починаючи з початкового моменту його польоту, багатоканальної (N) передачі команд керування на ЛА на частотах міжмодових биттів, здійсненні об'єктивного контролю у денних і нічних умовах, збереженні інформації, яка оброблена під час проведення випробувань ЛА, забезпеченні просторової стабілізації платформи, на якій розміщуються суміщена приймальнопередавальна апаратура і виконавчі механізми та, в разі необхідності, його пошуку у заданій зоні і скороченні часу на розпізнавання. На Фіг. 1 приведено передавальний бік узагальненої структурної схеми запропонованого каналу, де: І - вимірювальний сигнал; II - інформаційний сигнал та сигнал з просторовою модуляцією поляризації; III - комбінований сигнал у видимому і інфрачервоному діапазонах; б введення сигналу тангенціальної швидкості (кутових швидкостей) літального апарата, що виміряна. На Фіг. 2 приведена узагальнена структурна схема запропонованого каналу. На Фіг. 3 приведено створення рівносигнального напрямку (РСН) та сканування сумарною ДС лазерного випромінювання у невеликому куті і окремо 4-ма діаграмами спрямованості в ортогональних площинах. На Фіг. 4 приведено створення лазерного сигналу з просторовою модуляцією поляризації. На Фіг. 5 приведені епюри напруг з виходів блоків вимірювання R до ЛА, де: а) - від блока опорного сигналу; б) - від блока відбитого сигналу. Запропонований канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для мобільної суміщеної вимірювальної системи містить керуючий елемент 1, блок керування дефлекторами 2, лазер з накачкою 3, селектор подовжніх мод з багаточастотним розділенням каналів 4, призми для частоти міжмодових биттів м , модифікований блок дефлекторів 5, перемикач для частот міжмодових биттів м і 2м , передавальну оптику 6, оптико-електронний модуль 7, який складений з телевізійного і інфрачервоного каналів, приймальну оптику 8, фотодетектори 9, широкосмуговий підсилювач 10, інформаційний блок з розширеними можливостями 11 з б введенням сигналу тангенціальної швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі 12, настроєні на відповідні частоти міжмодових биттів, формувач імпульсів 13, схему "і" 14, фільтр із заданою смугою пропускання 15, диференційований ланцюжок 16, випрямляч 17, тригер 18, детектор 19, диференційовану оптику 20, підсилювач 21, фільтр 22, лічильник 23, електронну обчислювальну машину 24 та гіростабілізовану платформу 25. Робота запропонованого каналу вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для мобільної суміщеної вимірювальної системи полягає у наступному. Зі спектру випромінювання одномодового багаточастотного з синхронізацією подовжніх мод лазера-передавача (Лн) за допомогою СПМ БРК виділяються необхідні пари частот для створення: багатоканального (N) інформаційного зв'язку, за умови використання сигналів комбінацій подовжніх мод (на різницевій частоті міжмодових биттів 101  10  1  9м,...Nмn ); лазерного сигналу з просторовою модуляцією поляризації, за умови використання сигналу з двох подовжніх мод (несучих частот n1 , n2 ); РСН на основі формування сумарної ДС лазерного випромінювання, завдяки 4-м парціальним діаграмам спрямованості, що частково перетинаються, за умови використання комбінацій подовжніх мод ("підфарбованих" різницевими частотами міжмодових биттів) 54  5   4  м , 97  9  7  2м , 63  6  3  3м , 82  8   4  6м . Лазерний сигнал, який складений з частот міжмодових биттів Nмn , минаючи МБД, потрапляє на ПРДО, де змішується (модулюється) з інформаційним сигналом від ІБРМ та формує багатоканальний ( N ) інформаційний сигнал, що передається на ЛА (Фіг. 1, 3). Також, за допомогою СПМ БРК та ІБРМ створюється лазерний сигнал з просторовою модуляцією поляризації шляхом створення лазерного випромінювання з двох несучих частот ( n1 та n2 ) у вигляді двох променів з вертикальною ( n1 ) та горизонтальною ( n2 ) поляризацією (Фіг. 4). При цьому випромінювання апертури першого і другого поляризаційних 2 UA 110339 U 5 10 15 20 25 30 35 40 каналів в апертурній площині V0U рознесені на відомій відстані  q . Різність ходу пучків до картинної площини ЛА ХОУ змінюється вдовж осі X від точки до точки. Обумовлена цим різність фаз (амплітуд) між поляризованими компонентами, що ортогональні, поля у картинній площині також змінюється від точки до точки. В залежності від різності фаз (амплітуд) у картинній площині змінюється вигляд поляризації сумарного поля сигналу, що зондує від лінійної через еліптичну і циркулюючу до лінійної, ортогональної до початкової і т.д. Період зміни вигляду поляризації визначається базою між випромінювачами  q та відстанню до картинної площини R. Розподіл інтенсивності в реєстрованому зображенні ЛА промодульовано по гармонійному закону з коефіцієнтом модуляції та дорівнює значенню ступеня поляризації випромінювання, що відбито в даній ділянці поверхні ЛА. Водночас імпульсний лазерний сигнал (вимірювальний) частот міжмодових биттів м , 2м , 3м та 6м надходить на МБД, що складається з 4-х п'єзоелектричних дефлекторів. Парціальні ДС лазерного випромінювання попарно зустрічно сканують МБД у кожній з двох ортогональних площин (Фіг. 3). Період сканування задається БКД, який разом з Лн живляться від КЕ. Проходячи через ПРДО, груповий лазерний імпульсний сигнал пар частот 5,  4  м , 9, 7  2м , 6, 3  3м та 8, 2  6м фокусується в скановані точки простору, оскільки здійснюється зустрічне сканування двома парами ДС лазерного випромінювання у кожній з двох ортогональних площин  і  (X і У). При цьому груповий (інформаційний) лазерний сигнал частот 9м...Nмn та лазерний сигнал з просторовою модуляцією поляризації на несучих частотах n1 та n2 проходять вдовж РСН (Фіг. 3). Принцип роботи грубої шкали каналу вимірювання похилої дальності до ЛА полягає у наступному (Фіг. 2, 5). На передавальному боці. Виділена селектором подовжніх мод зі спектру випромінювання лазера перша пара частот  5,4 , розщеплюється під дією розщеплювача (призми) на два оптичні сигнали: 1) основний (1) - сканується МБД під певним кутом (з часом Тпр , що задається від БКД), який проходить через перемикач (П) для виділення "бланкуючого" імпульсу (бланк - нуль) і розщеплювач, де відбувається виділення додаткового сигналу (2), та надходить на ПРДО і далі на ЛА; 2) додатковий (2) - перетворюється ФТД в електричний імпульсний сигнал різницевої частоти міжмодового биття м та надходить на ФІ1, де відбувається виділення "пачок" імпульсів, прийнятих схемою "І". Прийняті ПРМО від ЛА інформаційні та лазерні імпульсні сигнали і огинаючі сигнали ДС лазерного випромінювання, відбиті в процесі сканування чотирьох ДС, за допомогою ФТД перетворюються в електричні імпульсні сигнали на несучих частотах і різницевих частотах міжмодових биттів. Підсилені ШП вони розподіляються: в ІБРМ для обробки інформації, що приймається від ЛА та відбитого лазерного сигналу з просторовою модуляцією поляризації, що зондує, від його поверхні; по РП, що настроєні на відповідні частоти міжмодових биттів м в ід , 2м в ід , 3м в ід , 6м в ід . 45 50 Імпульсні сигнали радіочастоти, що надходять з РП 1 (РП м ), формують сигнал про R до ЛА, а РП 4 (РП 6м ), РП 2 (РП 2м ) і РП 3 (РП 3м ) - сигнали для інших вимірювальних каналів КЛС. При відбитті лазерного сигналу з просторовою модуляцією поляризації, що зондує, від поверхні ЛА, змінюються амплітудні і фазові співвідношення між ортогонально поляризаційними компонентами, параметри їх поляризаційні і, відповідно, комплексні коефіцієнти когерентності відбитого поля. Просторовий розподіл поляризаційних характеристик такого відбитого сигналу по зміні контрасту модуляційної структури зображення несе також інформацію про типи матеріалів у складі поверхні ЛА, їх характеристики і тощо, що відображається у ЕОМ. Тому у ІБРМ також здійснюється поляризаційна обробка поля, що приймається. Отриманий від ФТД додатковий оптичний сигнал частоти  5,4 з "бланкуючими" імпульсами, перетворений в сигнал м , здобуває чіткі границі "бланкуючого" імпульсу та, проходячи до, підсилюється. 3 UA 110339 U 5 10 15 20 25 30 35 40 45 50 55 Фільтр зі смугою пропускання   1/ і (де і - тривалість імпульсу) виділяє з загального сигналу "бланкуючі" імпульси - в імпульсні сигнали, які проходячи ДЛ і Вип - (ФІ=ДЛ+Вип), виділяються у вигляді одного короткого імпульсу за початок "бланкуючого" імпульсу та надходять на тригер з індексом "1", включаючи його. На приймальному боці. Відбитий від ЛА основний сигнал частот  5,4 у сумі з груповим, минаючи ПРМО, перетворюється ФТД в електричний імпульсний сигнал м , підсилюється ШП, виділяється в РП, як сигнал міжмодової частоти м і, проходячи через Дет, перетворюється таким же чином, як і додатковий електричний сигнал (2) частоти м та надходить тільки на тригер з індексом "0", "перекидаючи" його. Сигнал, що надходить з тригера на схему "І", здійснює періодичне "відкриття" і "закриття" проходу для "пачок" імпульсів з ФІ1, що підраховуються Лч та відпрацьовуються у вигляді числа R у ЕОМ. Таким чином відбувається вимір R до ЛА на грубій шкалі. Перехід на точну шкалу (генерація пікосекундних імпульсів) здійснюється одразу після припинення включення перемикача ("П") (формування "бланкуючого" імпульсу). Так як канал вимірювання похилої дальності до ЛА вводиться до складу структури МСВС, то вмикання та вимикання перемикача (П) відбувається одночасно для 2-х (пар) частот  5,4 і  9,7 . Апаратурні помилки вимірювання R до ЛА у запропонованому каналі - це помилки визначення початку і кінця відліку часового інтервалу, помилки за рахунок дискретності та нестабільності частоти проходження тактових (рахункових) імпульсів. Точність оцінки інтервалу визначається крутістю огинаючої при заданому граничному значенні напруги U , та залежить від форми скануючої ДС лазерного випромінювання і відношення сигнал/шум. Вимірювальна інформація про тангенціальну швидкість (кутові швидкості) ЛА від каналу кутових швидкостей використовується в ІБРМ, де завдяки додатковій обробці елементів поляризаційної матриці розсіяння ЛА від отриманого поляризаційного поля (суми сигналів різної поляризації) забезпечується точне значення кутових швидкостей ЛА, розширюється набір ознак його розпізнавання, підвищується ефективність та скорочується час на розпізнавання ЛА, що супроводжується. Відображення інформації, що приймається (передається) від ЛА, об'єктивний контроль та обробка (вимірювання) похилої дальності до ЛА відбувається в ЕОМ. Для збереження інформації, яка оброблена під час проведення випробувань ЛА, в пам'яті ЕОМ використовується база даних - сукупність взаємопов'язаних даних, організованих у відповідності до схеми даних таким чином, щоб з ними міг працювати користувач. Підвищення швидкості обробки інформації, яка надходить на ЕОМ здійснюється за рахунок використання технології синтезу часупараметризованих паралельних програм. Гіростабілізована платформа забезпечує дотримання просторової стабілізації платформи каналу, на якій розміщена суміщена приймально-передавальна апаратура та ВМ по кутах азимута  і місця  . В разі необхідності виявлення ЛА у заданій точці простору груповий сигнал, який складений з частот міжмодових биттів і несучих частот  n , сканується у вигляді сумарної ДС лазерного випромінювання за допомогою модифікованого блока дефлекторів, де кут та напрямок відхилення сумарної ДС задається блоком керування дефлекторів (Фіг. 1, 3). Кількість інформаційних каналів ( N ) залежить від кількості комбінацій парних мод (несучих частот  n ), які мають необхідні вихідні характеристики для використання. Формування сумарної ДС лазерного випромінювання, створення РСН, інформаційного каналу для каналу, що пропонується, пов'язано із задоволенням жорстких вимог, що пред'являються до спектру випромінювання одномодового багаточастотного лазерапередавача, тобто високоточної синхронізації подовжніх мод і стабілізації частот міжмодових биттів. Джерела інформації: 1. Патент на корисну модель №88623, Україна, MПK G01 S 17/42, G01 S 17/66. Канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для полігонного випробувального комплексу./ О.В. 4 UA 110339 U 5 10 Коломійцев, І.І. Сачук, Г.В. Альошин та ін. - № u201311808; заяв. 07.10.2013; опубл. 25.03.2014; Бюл. № 6. - 8 с. 2. Патент на корисну модель № 100571, Україна, MI1KG01 S 17/42, G01 S 17/66. Канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для комбінованої лазерної системи./ О.В. Коломійцев, І.І. Сачук, A.M. Булай та ін. - № u201502488; заяв. 19.03.2015; опубл. 27.07.2015; Бюл. № 14. - 7 с. 3. Патент на корисну модель № 55645, Україна, MПK G01 S 17/42, G01 S 17/66. Частотночасовий метод пошуку, розпізнавання та вимірювання параметрів руху літального апарату./ О.В. Коломійцев - № u201005225; заяв. 29.04.2010; опубл. 27.12.2010; Бюл. № 24. - 14 с. ФОРМУЛА КОРИСНОЇ МОДЕЛІ 15 20 25 Канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і МБД та розширеними можливостями для мобільної суміщеної вимірювальної системи, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, селектор подовжніх мод з багаточастотним розділенням каналів, призми для частоти міжмодових биттів  м , модифікований блок дефлекторів, перемикач для частот міжмодових биттів  м і 2м , передавальну оптику, оптико-електронний модуль, який складений з телевізійного і інфрачервоного каналів, приймальну оптику, фотодетектори, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями з б введенням сигналу тангенціальної швидкості (кутових швидкостей) літального апарату, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувач імпульсів, схему "і", фільтр із заданою смугою пропускання, диференційований ланцюжок, випрямляч, тригер, детектор, диференційовану оптику, підсилювач, фільтр, лічильник та електронну обчислювальну машину, який відрізняється тим, що додатково введено гіростабілізовану платформу. 5 UA 110339 U 6 UA 110339 U Комп’ютерна верстка В. Мацело Державна служба інтелектуальної власності України, вул. Василя Липківського, 45, м. Київ, МСП, 03680, Україна ДП “Український інститут інтелектуальної власності”, вул. Глазунова, 1, м. Київ – 42, 01601 7

Дивитися

Додаткова інформація

МПК / Мітки

МПК: G01S 17/66, G01S 17/42

Мітки: розширеними, мбд, літальних, частот, використанням, канал, суміщеної, апаратів, системі, вимірювання, дальності, биттів, мобільної, можливостями, вимірювальної, міжмодових, похило

Код посилання

<a href="https://ua.patents.su/9-110339-kanal-vimiryuvannya-pokhilo-dalnosti-do-litalnikh-aparativ-z-vikoristannyam-chastot-mizhmodovikh-bittiv-i-mbd-ta-rozshirenimi-mozhlivostyami-dlya-mobilno-sumishheno-vimiryuvalno-si.html" target="_blank" rel="follow" title="База патентів України">Канал вимірювання похилої дальності до літальних апаратів з використанням частот міжмодових биттів і мбд та розширеними можливостями для мобільної суміщеної вимірювальної системи</a>

Подібні патенти