Канал вимірювання радіальної швидкості літальних апаратів з бспм та розширеними можливостями для лівс полігонного випробувального комплексу
Номер патенту: 72824
Опубліковано: 27.08.2012
Автори: Воронов Дмитро Миколайович, Альошин Геннадій Васильович, Коломійцев Олексій Володимирович, Приходько Дмитро Петрович, Васильєв Дмитро Геннадійович, Храпчинський Василь Олегович, Колодій Олег Павлович, Сачук Ігор Іванович, Широбоков Юрій Миколайович, Ставицький Олег Миколайович
Формула / Реферат
Канал вимірювання радіальної швидкості літальних апаратів з БСПМ та розширеними можливостями для ЛІВС полігонного випробувального комплексу, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою (Лн), багатофункціональний селектор подовжніх мод (БСПМ), блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями із б-введенням сигналу тангенціальної складової швидкості (кутових швидкостей) літального апарата (ЛА), що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему I, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор (ДШ), фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки Dnп, блок відображення вимірювальної інформації про радіальну швидкість R' ЛА та 6Dnм - введення опорної частоти (6Dnм оп) від передавального лазера (Лн+БСПМ), який відрізняється тим, що після ДШ замість електронно-цифрової обчислювальної машини введено електронну обчислювальну машину.
Текст
Реферат: Канал вимірювання радіальної швидкості літальних апаратів з БСПМ та розширеними можливостями для ЛІВС полігонного випробувального комплексу містить керуючий елемент, блок керування дефлекторами, лазер з накачкою (Лн), багатофункціональний селектор подовжніх мод (БСПМ), блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями із б-введенням сигналу тангенціальної складової швидкості (кутових швидкостей) літального апарата (ЛА), що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему I, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор (ДШ), фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки п, блок відображення вимірювальної інформації про радіальну швидкість R' ЛА та 6м - введення опорної частоти (6м оп) від передавального лазера (Лн+БСПМ). Після ДШ замість електронно-цифрової обчислювальної машини введено електронну обчислювальну машину. UA 72824 U (12) UA 72824 U UA 72824 U 5 10 15 20 25 30 35 40 45 50 55 60 Запропонована корисна модель належить до галузі електрозв'язку і може бути використана для побудови передавальної частини лазерної інформаційно-вимірювальної системи (ЛІВС) з частотно-часовим методом (ЧЧМ) пошуку, розпізнавання та вимірювання параметрів руху літального апарата (ЛА). Відомий "Канал вимірювання радіальної швидкості літальних апаратів" [1], який містить керуючий елемент (КЕ), блок керування дефлекторами (БКД), лазер з накачкою (Лн), багатофункціональний селектор подовжніх мод (БСПМ), блок дефлекторів (БД), передавальну оптику (ПРДО), приймальну оптику (ПРМО), фотодетектор (ФТД), широкосмуговий підсилювач (ПІП), інформаційний блок (ІБ), резонансні підсилювачі (РП), настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів (ФІ), схему І, лічильник (Лч), змішувачі (ЗМ), фільтр (Ф), формувач мірних імпульсів (ФМІ), дешифратор (ДІТТ), фазову автопідстройку частоти (ФАПЧ) на частоті міжмодових биттів, керуючий генератор (КГ), опорний генератор (ОГ) з частотою підставки п, електронно-цифрову обчислювальну машину (ЕЦОМ), блок відображення інформації (БВІ) про радіальну швидкість R' ЛА та 6м - введення опорної частоти (6м оп) від передавального лазера (Лн+БСПМ). Недоліком відомого каналу є те, що він не використовує лазерний сигнал із просторовою модуляцією поляризації на несучих частотах n1 та n2 для детального розпізнавання ЛА. Найбільш близьким до запропонованого технічним рішенням, обраним як прототип є "Канал вимірювання радіальної швидкості літальних апаратів з БСПМ та розширеними можливостями" [2], який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, багатофункціональний селектор подовжніх мод, блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями (ІБРМ) із б - введенням сигналу тангенціальної складової швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему І, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор, фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки п, електронно-цифрову обчислювальну машину, блок відображення вимірювальної інформації про радіальну швидкість R' ЛА та 6M - введення опорної частоти (6м оп) від передавального лазера (Лн+БСПМ). Недоліком каналу-прототипу є те, що він не забезпечує збереження інформації, яка оброблена під час проведення випробувань ЛА. В основу корисної моделі поставлена задача створити канал вимірювання радіальної швидкості літальних апаратів з БСПМ та розширеними можливостями для ШВС полігонного випробувального комплексу, який дозволить здійснювати багатоканальний (N) інформаційний взаємозв'язок з ЛА на несучих частотах n і частоті міжмодових биттів, високоточне вимірювання радіальної швидкості у широкому діапазоні дальностей, починаючи з початкового моменту його польоту, збереження інформації, яка оброблена під час проведення випробувань ЛА та, завдяки використання поляризаційних ознак, що отримуються, детально розпізнавати його за короткий час. Поставлена задача вирішується за рахунок того, що у канал-прототип, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, багатофункціональний селектор подовжніх мод, блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями із б-введенням сигналу тангенціальної складової швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему І, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор, фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки п, електронно-цифрову обчислювальну машину, блок відображення вимірювальної інформації про радіальну швидкість R' ЛА та 6M - введення опорної частоти (6м оп) від передавального лазера (Лн+БСПМ), після ДШ замість ЕЦОМ введено електронну обчислювальну машину (ЕОМ). Побудова каналу вимірювання радіальної швидкості літальних апаратів з БСПМ та розширеними можливостями для ЛІВС полігонного випробувального комплексу пов'язана з використанням синхронізованого одномодового багаточастотного випромінювання єдиного лазера-передавача та ЧЧМ [3]. Технічний результат, який може бути отриманий при здійсненні корисної моделі, полягає в багатоканальному (N) інформаційному взаємозв'язку з ЛА, високоточному вимірюванні радіальної швидкості R' у широкому діапазоні дальностей, починаючи з початкового моменту його польоту, збереженні інформації, яка оброблена під час проведення випробувань ЛА та 1 UA 72824 U 5 10 15 20 25 30 35 40 45 50 55 розширенні набору поляризаційних ознак розпізнавання, що отримуються, підвищенні ефективності і скороченні часу на його розпізнавання. На фіг. 1 приведено передавальний бік узагальненої структурної схеми запропонованого каналу, де: 1 - вимірювальний сигнал; 2 - інформаційний сигнал та сигнал із просторовою модуляцією поляризації. На фіг. 2 приведена узагальнена структурна схема запропонованого каналу, де: І структурна схема реалізації слідкувального принципу вимірювання; II - структурна схема вимірювання радіальної швидкості ЛА. На фіг. 3 приведено створення рівносигнального напрямку (РСН) та сканування 4 діаграмами спрямованості (ДС) лазерного випромінювання в ортогональних площинах. На фіг. 4 приведено створення лазерного сигналу із просторовою модуляцією поляризації. Запропонований канал вимірювання радіальної швидкості літальних апаратів з БСПМ та розширеними можливостями для ЛІВС полігонного випробувального комплексу містить керуючий елемент, блок керування дефлекторами, лазер з накачкою, багатофункціональний селектор подовжніх мод, блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями із б - введенням сигналу тангенціальної складової швидкості (кутових швидкостей) ЛА, що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему І, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор, фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки п, електронну обчислювальну машину, блок відображення вимірювальної інформації про радіальну швидкість R' ЛА та 6AvM - введення опорної частоти (6м оп) від передавального лазера (Лн+БСПМ). Робота запропонованого каналу вимірювання радіальної швидкості літальних апаратів з БСПМ та розширеними можливостями для ЛІВС полігонного випробувального комплексу полягає у наступному. Із синхронізованого одномодового багаточастотного спектра випромінювання лазера-передавача (Лн) за допомогою БСПМ виділяються необхідні пари частот для створення: багатоканального (N) інформаційного зв'язку, за умови використання сигналу комбінації : подовжніх мод (на різницевій частоті міжмодових биттів 101=10-1 =9M), а також подовжніх мод (несучих частот n); лазерного сигналу із просторовою модуляцією поляризації, за умови використання сигналу з двох подовжніх мод (несучих частот n1, n2); рівносигнального напрямку на основі формування сумарної ДС лазерного випромінювання, завдяки 4 парціальним ДС, що частково перетинаються, за умови використання комбінацій подовжніх мод ("підфарбованих" різницевими частотами міжмодових биттів): 54=5-4=M, 97=9-7=2M, 63=6-3=3M, 82=8-2=6M. Груповий сигнал, який складений із частоти міжмодових биттів 9M і несучих частот n, минаючи БД, потрапляє на ПРДО, де змішується (модулюється) з інформаційним сигналом від ІБРМ та формує багатоканальний (N) інформаційний сигнал, що передається для ЛА (взаємозв'язок) (фіг. 1, 2). Також, за допомогою БСПМ та ІБРМ створюється лазерний сигнал із просторовою модуляцією поляризації шляхом створення лазерного випромінювання із двох несучих частот (n1 та n2) у вигляді двох променів з вертикальною (n1) та горизонтальною (n2) поляризацією (фіг. 4). При цьому випромінювання апертури першого і другого поляризаційних каналів в апертурної плоскості V0U рознесені на відомій відстані q. Різність ходу пучків до картинної плоскості ЛА ХОУ змінюється вдовж осі X від точки до точки. Обумовлена цім різність фаз (амплітуд) між поляризованими компонентами, що ортогональні, поля у картинної плоскості також змінюється від точки до точки. В залежності від різності фаз (амплітуд) у картинній плоскості змінюється вигляд поляризації сумарного поля сигналу, що зондує від лінійної через еліптичну і циркулюючу до лінійної, ортогональної к начальної і т.д. Період зміни вигляду поляризації визначається базою між випромінювачами q та відстанню до картинної плоскості R. Розподіл інтенсивності в реєстрованому зображенні ЛА промодульовано по гармонійному закону з коефіцієнтом модуляції, дорівнює значенню ступеня поляризації випромінювання, що відбито в даній ділянці поверхні ЛА. Водночас сигнал частот міжмодових биттів M, 2M, 3M та 6M потрапляє на БД, який створений з 4-х п'єзоелектричних дефлекторів. Парціальні ДС лазерного випромінювання попарно зустрічно сканують БД у кожній із двох ортогональних площин (фіг. 1, 2). Період сканування задається БКД, який разом з Лн живляться від КЕ. 2 UA 72824 U 5 10 15 20 25 30 35 40 45 50 55 Проходячи через ПРДО, груповий лазерний імпульсний сигнал пар частот 5,4=M, 9,7=2M, 6,3=3M та 8,2=6M фокусується в скановані точки простору, оскільки здійснюється зустрічне сканування двома парами 6 ДС лазерного випромінювання у кожній із двох ортогональних площин і або X і Y. При цьому інформаційний сигнал (на частотах N n і 10,9=9M) та сигнал із просторовою модуляцією поляризації (на несучих частотах n1, n2) проходять вдовж РСН (фіг. 2, 3). Прийняті ПРМО від ЛА інформаційні та лазерні імпульсні сигнали і огинаючи сигнали ДС лазерного випромінювання, відбиті в процесі сканування чотирьох ДС, за допомогою фотодетектора перетворюються в електричні імпульсні сигнали на несучих частотах і різницевих частотах міжмодових биттів. Підсилені ШП вони розподіляються: в ІБРМ для обробки інформації, що приймається від ЛА та відбитого лазерного сигналу із просторовою модуляцією поляризації, що зондує, від його поверхні; по РП, що настроєні на відповідні частоти міжмодових биттів м від, 2м від, 3м від, 6м від. При цьому імпульсні сигнали радіочастоти, що надходять з РП4 (РП 6AvM від) формують сигнал радіальної швидкості, а РП 1 (РП м від), РП 2 (РП 2м від) і РПЗ (РП 3м від) - для інших вимірювальних каналів ЛІВС. При відбитті лазерного сигналу із просторовою модуляцією поляризації, що зондує, від поверхні ЛА, змінюються амплітудні і фазові співвідношення між ортогонально поляризаційними компонентами, параметри їх поляризаційні і, відповідно, комплексні коефіцієнти когерентності відбитого поля. Просторовий розподіл поляризаційних характеристик такого відбитого сигналу по зміні контрасту модуляційної структури зображення несе також інформацію про типи матеріалів у складі поверхні ЛА, їх характеристики і тощо, що відображається у ЕОМ. Тому у ІБРМ також здійснюється поляризаційна обробка поля, що приймається. Принцип вимірювання радіальної швидкості R' ЛА полягає в наступному (фіг. 1, 2). На перший змішувач (3М1) від РП 4 (РП 6M) подається сигнал із частотою 6м від, який змішується через зворотній зв'язок зі сумішшю частот 6м від + м п, від КГ та фільтрується. У ФАПЧ на частоті міжмодових биттів цей сигнал змішується з частотою п від ОГ. Отриманий сигнал з частотою r з виходу А керуючого генератора подається на вхід другого змішувача (ЗМ2), де змішується з опорною частотою 6м. Сигнал різницевої частоти 6м від(M-M п), отриманий з виходу Ф2, через ФІ, надходить на схему І. На лічильник проходить пачка імпульсів обумовлена мірним інтервалом від ФМІ. Виділена дешифратором кількість рахункових імпульсів пропорційна частоті M допл, перетворюється в ЕОМ у цифроаналоговий сигнал, який у цифровому вигляді відображає радіальну швидкість ЛА на цифровому табло блоку відображення інформації. Для збереження інформації, яка оброблена під час проведення випробувань ЛА, в пам'яті ЕОМ використовується база даних - сукупність взаємопов'язаних даних, організованих у відповідності до схеми даних таким чином, щоб з ними міг працювати користувач. Вимірювальна інформація про тангенціальну складову швидкості (кутові швидкості) ЛА від каналу кутових швидкостей використовується в ІБРМ, де завдяки додаткової обробці елементів поляризаційної матриці розсіяння ЛА від отриманого поляризаційного поля (суми сигналів різної поляризації) забезпечується точне значення кутових швидкостей ЛА, розширюється набір ознак його розпізнавання, підвищується ефективність та скорочується час на розпізнавання ЛА, що супроводжується. Формування сумарної ДС лазерного випромінювання, створення РСН, інформаційного каналу для каналу, що пропонується, пов'язано із задоволенням жорстких вимог, що пред'являються до спектра випромінювання одномодового багаточастотного лазерапередавача, тобто високоточної синхронізації подовжніх мод і стабілізації частот міжмодових биттів. Кількість інформаційних каналів (N) залежить від кількості мод (несучих частот n), які мають необхідні вихідні характеристики для використання. Джерела інформації: 1. Патент на корисну модель №43070, Україна, МПК G01S 17/42, G01S 17/66. Канал вимірювання радіальної швидкості літальних апаратів. /О.В. Коломійцев, Г.В. Альошин, В.В. Бєлімов та ін. - № и200903694; заяв. 15.04.2009; опубл. 27.07.2009; Бюл. № 14.-6 с 2. Патент на корисну модель №61313, Україна, МПК G01S 17/42, G01S 17/66. Канал вимірювання радіальної швидкості літальних апаратів з БСПМ та розширеними можливостями. /О.В. Коломійцев, Г.В. Альошин, Д.Г. Васильєв та ін. - №и201102343; заяв. 28.02.2011; опубл. 11.07.2011; Бюл. № 13.-10 с 3 UA 72824 U 3. Патент на корисну модель №55645, Україна, МПК G01S 17/42, G01S 17/66. Частотночасовий метод пошуку, розпізнавання та вимірювання параметрів руху літального апарату. /О.В. Коломійцев - № и201005225; заяв. 29.04.2010; опубл. 27.12.2010; Бюл. № 24.-14 с. 5 10 15 ФОРМУЛА КОРИСНОЇ МОДЕЛІ Канал вимірювання радіальної швидкості літальних апаратів з БСПМ та розширеними можливостями для ЛІВС полігонного випробувального комплексу, який містить керуючий елемент, блок керування дефлекторами, лазер з накачкою (Лн), багатофункціональний селектор подовжніх мод (БСПМ), блок дефлекторів, передавальну оптику, приймальну оптику, фотодетектор, широкосмуговий підсилювач, інформаційний блок з розширеними можливостями із б-введенням сигналу тангенціальної складової швидкості (кутових швидкостей) літального апарата (ЛА), що виміряна, резонансні підсилювачі, настроєні на відповідні частоти міжмодових биттів, формувачі імпульсів, схему I, лічильник, змішувачі, фільтр, формувач мірних імпульсів, дешифратор (ДШ), фазову автопідстройку частоти на частоті міжмодових биттів, керуючий генератор, опорний генератор з частотою підставки п, блок відображення вимірювальної інформації про радіальну швидкість R' ЛА та 6м - введення опорної частоти (6м оп) від передавального лазера (Лн+БСПМ), який відрізняється тим, що після ДШ замість електронноцифрової обчислювальної машини введено електронну обчислювальну машину. 4 UA 72824 U Комп’ютерна верстка Г. Паяльніков Державна служба інтелектуальної власності України, вул. Урицького, 45, м. Київ, МСП, 03680, Україна ДП “Український інститут промислової власності”, вул. Глазунова, 1, м. Київ – 42, 01601 5
ДивитисяДодаткова інформація
Назва патенту англійськоюChannel for measurement of radial velocity of aircrafts with multifunctional longitudinal mode selector and increased capabilities for laser information and measuring system of a launch-site test complex
Автори англійськоюKolomiitsev Oleksii Volodymyrovych, Alioshyn Hennadii Vasyliovych, Vasyliev Dmytro Hennadiiovych, Voronov Dmytro Mykhailovych, Kolodii Oleh Pavlovych, Prykhodko Dmytro Petrovych, Sachuk Ihor Ivanovych, Stavytskyi Oleh Mykolaiovych, Khrapchynskyi Vasyl Olehovych, Shurobokov Yurii Mykolaiovych
Назва патенту російськоюКанал измерения радиальной скорости летательных аппаратов с мспм и расширенными возможностями для лиис полигонного испытательного комплекса
Автори російськоюКоломийцев Алексей Владимирович, Алешин Геннадий Васильевич, Васильев Дмитрий Геннадьевич, Воронов Дмитрий Николаевич, Колодий Олег Павлович, Приходько Дмитрий Петрович, Сачук Игорь Иванович, Ставицкий Олег Николаевич, Храпчинский Василий Олегович, Широбоков Юрий Николаевич
МПК / Мітки
МПК: G01S 17/42, G01S 17/66
Мітки: літальних, розширеними, випробувального, вимірювання, швидкості, можливостями, бспм, комплексу, апаратів, лівс, полігонного, канал, радіальної
Код посилання
<a href="https://ua.patents.su/7-72824-kanal-vimiryuvannya-radialno-shvidkosti-litalnikh-aparativ-z-bspm-ta-rozshirenimi-mozhlivostyami-dlya-livs-poligonnogo-viprobuvalnogo-kompleksu.html" target="_blank" rel="follow" title="База патентів України">Канал вимірювання радіальної швидкості літальних апаратів з бспм та розширеними можливостями для лівс полігонного випробувального комплексу</a>
Попередній патент: Канал вимірювання похилої дальності до літальних апаратів з бспм та розширеними можливостями для лівс полігонного випробувального комплексу
Наступний патент: Спосіб лікування пухлин в експерименті
Випадковий патент: Спосіб відливки зливка